Home Quiz Old Paper PPT

Ppt on Major Diseases Of Pea And Their Management Strategies

This presentation covers the major diseases affecting pea (Pisum sativum), focusing on their causal agents, symptoms, disease cycles, and management strategies. Emphasis is placed on accurate identification, epidemiology, and integrated management practices. Key concepts include pathogen identification, symptomatology, disease cycle, epidemiology, and integrated disease management.
Introduction to Pea Diseases
  • Pea (Pisum sativum) is susceptible to several fungal diseases.
  • Major diseases include Fusarium wilt, powdery mildew, downy mildew, rust, and Ascochyta blight.
  • Effective management requires understanding pathogen biology and disease epidemiology.
Fusarium Wilt – Pathogen and Symptoms
  • Caused by Fusarium oxysporum f. sp. pisi.
  • Initial symptoms: drooping, yellowing, and premature leaf drop.
  • Pod formation is severely affected; collar region shows necrosis and discoloration.
  • Dark brown vascular discoloration visible in stem cross-section.
Fusarium Wilt – Disease Cycle and Management
  • Pathogen survives in soil for long periods; infects via root hairs.
  • Primary infection: soil, seed, water; secondary: conidia via rain splash.
  • Favored by soil temperatures of 23–27°C and warm weather.
  • Seed treatment with carbendazim (2 g/kg) and soil drenching with copper oxychloride (0.25%) recommended.
Powdery Mildew – Pathogen and Symptoms
  • Caused by Erysiphe pisi.
  • Appears as white powdery spots on leaves, stems, and pods.
  • Severely infected leaves become chlorotic, distorted, and may fall.
  • Pods may be small and malformed.
Powdery Mildew – Disease Cycle and Management
  • Spread by airborne spores; thrives in warm (15–25°C), humid (>70%) conditions.
  • Cultural control: use resistant varieties, destroy infected stubble, avoid adjacent sowing to previous pea fields.
  • Chemical control: sprays of benomyl, carbendazim, sulphur, or triadimefon as per recommended doses and intervals.
Downy Mildew – Pathogen and Symptoms
  • Caused by Peronospora viciae.
  • Grayish-white mold on lower leaf surface; yellowish area on upper side.
  • Infected leaves turn yellow, die; stems may be stunted and distorted.
  • Brown blotches and mold may develop on pods.
Downy Mildew – Disease Cycle and Management
  • Primary infection: soil, seed, water; secondary: sporangia via rain splash or wind.
  • Favored by high humidity and low temperatures (5–15°C).
  • Remove and burn diseased plants promptly to reduce inoculum.
Rust – Pathogen and Symptoms
  • Caused by Uromyces pisi.
  • Initial symptoms: leaf flecking, progressing to reddish-brown pustules.
  • Pustules merge, burst, and release brown spores; severe cases cause plant drying and yield loss.
Rust – Disease Cycle and Management
  • Survives on infected plant debris and alternate hosts (e.g., Euphorbia).
  • Favored by frequent precipitation, dew, and temperatures of 20–25°C.
  • Cultural control: destroy debris, crop rotation with non-legumes, mixed cropping.
  • Chemical control: sulphur or triadimefon sprays as per recommendations.
Ascochyta Blight – Pathogens and Symptoms
  • Caused by Ascochyta pisi, A. pinodes, and A. pinodella.
  • Symptoms: purplish-brown flecks on lower leaves, stems, tendrils; lesions enlarge and coalesce.
  • Severe infection causes foot rot (purplish-black lesions at soil line), lodging, and pod lesions.
  • Pod infection leads to small, discolored, or shrunken seeds.
Ascochyta Blight – Disease Cycle and Management
  • Ascospores spread by wind; conidia by rain splash.
  • Primary infection from diseased seed or soil debris.
  • Favored by warm, humid conditions (15–25°C).
  • Use resistant varieties (e.g., B-90, CDC Frontier, CDC Luna), seed treatment with thiabendazole, and crop rotation.
Summary: Integrated Disease Management in Pea
  • Combine cultural, chemical, and genetic resistance strategies for effective control.
  • Use certified disease-free seed and resistant varieties.
  • Practice crop rotation and field sanitation.
  • Apply fungicides judiciously based on disease monitoring and recommendations.

Ppt on Major Diseases Of Cucurbits: Symptoms, Causal Agents And Management Strategies

This presentation covers major diseases of cucurbits, including their symptoms, etiology, disease cycles, and management strategies. Emphasis is placed on accurate identification and integrated management of fungal, bacterial, and viral pathogens affecting cucurbit crops. Key concepts include disease diagnosis, pathogen biology, epidemiology, and control measures. Important academic keywords: pathogen, symptoms, disease cycle, management, cucurbits.
Introduction to Diseases of Cucurbits
  • Cucurbits include cucumber, melon, watermelon, pumpkin, squash, and gourds.
  • Major diseases: Downy mildew, Powdery mildew, Fusarium wilt, Angular leaf spot, Cucumber mosaic, and Tospovirus.
  • Diseases caused by fungi, bacteria, and viruses.
  • Effective management requires accurate diagnosis and integrated control strategies.
Downy Mildew – Pathogen and Symptoms
  • Pathogen: Pseudoperonospora cubensis (oomycete fungus).
  • Hosts: All major cucurbits.
  • Symptoms: Small yellow, water-soaked lesions on upper leaf surface; lesions turn brown and necrotic.
  • Severe infection causes leaf curling, death, and reduced fruit quality.
Downy Mildew – Disease Cycle and Management
  • Survives on collateral hosts and plant debris.
  • Spread by wind-borne sporangia and rain splash.
  • Management: Remove weeds, avoid overhead irrigation, use resistant varieties.
  • Fungicide sprays: Metalaxyl, chlorothalonil, or zineb at recommended intervals.
Powdery Mildew – Pathogen and Symptoms
  • Pathogens: Erysiphe cichoracearum and Sphaerotheca fuliginea.
  • Symptoms: White, powdery mycelium on both leaf surfaces, stems, and petioles.
  • Leads to leaf yellowing, drying, premature defoliation, and fruit deformation.
Powdery Mildew – Disease Cycle and Management
  • Overwinters as cleistothecia or on collateral hosts.
  • Spread by wind-borne conidia.
  • Management: Use resistant varieties, ensure good air circulation, apply fungicides (e.g., Calixin, Karathane).
Fusarium Wilt – Pathogen and Symptoms
  • Pathogen: Fusarium oxysporum f.sp. niveum.
  • Symptoms: Seedling damping-off, yellowing and wilting of leaves, vascular discoloration, stem lesions.
  • Older plants may collapse suddenly, especially under stress.
Fusarium Wilt – Disease Cycle and Management
  • Survives in soil as chlamydospores for years.
  • Primary infection from soil; secondary spread by water and wind.
  • Management: Seed treatment (Carboxin/Carbendazim), crop rotation, use resistant varieties, balanced fertilization, maintain soil pH 6.5–7.0.
Angular Leaf Spot – Pathogen and Symptoms
  • Pathogen: Pseudomonas syringae pv. lachrymans (bacterium).
  • Symptoms: Small, angular, water-soaked leaf spots; milky exudate under moist conditions.
  • Lesions dry to form shot-holes; fruit spots cause internal decay and deformation.
Angular Leaf Spot – Disease Cycle and Management
  • Seed-borne and survives in crop debris.
  • Spread by irrigation water and handling wet plants.
  • Management: Use pathogen-free seed, crop rotation, avoid overhead irrigation, apply bactericides (e.g., Streptomycin), destroy crop debris.
Cucumber Mosaic – Pathogen, Symptoms, and Spread
  • Pathogen: Cucumber mosaic virus (CMV).
  • Symptoms: Mosaic, leaf distortion, stunting, flower abnormalities, fruit deformation.
  • Transmitted by aphids (non-persistent) and cucumber beetles; survives on weeds and alternate hosts.
Cucumber Mosaic – Management
  • Rogue infected plants and eliminate weed hosts.
  • Control aphid vectors with insecticides (e.g., monocrotophos, phosphamidon).
  • Use resistant varieties where available.
Tospovirus (Tomato Spotted Wilt Virus) – Pathogen and Symptoms
  • Pathogen: Tomato spotted wilt virus (TSWV), a tospovirus.
  • Symptoms: Leaf bronzing, chlorotic spots, mosaic, die-back, stunting, fruit ring spots and necrosis.
  • Transmitted by thrips (e.g., Frankliniella occidentalis, Thrips palmi).
Tospovirus – Management
  • Use mesh screening and phytosanitary measures in nurseries.
  • Avoid planting near thrips reservoirs (ornamentals, older crops).
  • Control weeds and volunteer cucurbits.
  • Implement early insecticide programs to manage thrips populations.
Summary: Integrated Disease Management in Cucurbits
  • Combine cultural, chemical, and biological methods for effective disease control.
  • Use resistant varieties and certified seeds.
  • Practice crop rotation and field sanitation.
  • Monitor regularly for early detection and timely intervention.

Ppt on Phytoplasma-Induced Little Leaf Disease In Brinjal: Symptoms And Management

This presentation covers major diseases of brinjal (eggplant), focusing on their causal agents, symptoms, disease cycles, and management strategies. Emphasis is placed on identification, epidemiology, and integrated disease management. Key topics include little leaf, bacterial wilt, Phomopsis fruit rot, and Cercospora leaf spot. Important academic keywords: Phytoplasma, Ralstonia solanacearum, Phomopsis, epidemiology, management.
Introduction to Brinjal Diseases
  • Brinjal (Solanum melongena) is affected by several major diseases.
  • Diseases reduce yield and fruit quality significantly.
  • Understanding pathogens and symptoms is crucial for effective management.
Little Leaf Disease of Brinjal
  • Pathogen: Phytoplasma, localized in phloem sieve tubes.
  • Symptoms: Small, yellow, soft leaves; shortened petioles and internodes; bushy appearance.
  • Flowers, if formed, remain green; fruiting is rare and fruits are hard, necrotic, and mummified.
  • Spread by leafhoppers (mainly Hishimonas phycitis); survives in weed hosts.
Little Leaf Disease: Management
  • Grow tolerant varieties: Pusa Purple Round, Pusa Purple Cluster, Arka Sheel.
  • Destroy affected plants and eradicate solanaceous weeds.
  • Spray methyl demeton (2 ml/L) or apply phorate granules to soil.
  • Seed dip in tetracycline (10–50 ppm) to reduce infection.
Bacterial Wilt of Brinjal
  • Pathogen: Ralstonia solanacearum, a Gram-negative, motile rod.
  • Symptoms: Sudden wilting, leaf epinasty, yellowing, stunting, vascular browning, bacterial ooze from cut stems.
  • Soil and seed borne; survives in plant debris, wild hosts, and weeds.
  • Spread via irrigation water, infested soil, and contaminated tools.
Bacterial Wilt: Favourable Conditions and Management
  • Favoured by high soil moisture and temperature.
  • Resistant varieties: Pant Samrat, Arka Nidhi, Arka Neelakantha, Surya, BB 1, 44, 49.
  • Crop rotation with non-solanaceous crops; green manuring with Brassica spp.
  • Soil solarization (125 μm polyethylene, 8–10 weeks); biological control with Pseudomonas fluorescens, Bacillus spp.
  • Seed and soil treatment with antagonistic P. fluorescens; seedling dip before transplanting.
Phomopsis Fruit Rot (Phomopsis Blight)
  • Pathogen: Phomopsis vexans (asexual stage), Diaporthe vexans (sexual stage).
  • Attacks all growth stages; most destructive on fruits.
  • Symptoms: Damping-off in nursery, collar rot, leaf spots with pycnidia, stem cankers, sunken fruit spots, soft rot, mummified fruits.
  • Pathogen is seed-borne and survives in plant debris as mycelium and pycnidia.
Phomopsis Fruit Rot: Epidemiology and Management
  • Disseminated by rain splash, irrigation water, tools, and insects.
  • Favoured by high humidity, temperatures around 26°C, and wet weather.
  • Management: Remove crop debris, crop rotation, use disease-free seed.
  • Hot water seed treatment (50°C, 30 min); seed treatment with thiophanate methyl (1 g/kg).
  • Spray thiophanate methyl or carbendazim (0.1%) at 20-day intervals.
Cercospora Leaf Spot of Brinjal
  • Pathogen: Cercospora melongenae and related species.
  • Symptoms: Large, brown to grayish-brown circular or irregular leaf spots; coalescence leads to premature leaf drop and fruit rot.
  • Fungus survives in soil debris and infected seeds.
  • Favoured by high humidity, warm days, cool nights, and persistent dew.
Cercospora Leaf Spot: Management
  • Destroy crop debris; practice crop rotation and use disease-free seeds.
  • Maintain wider plant spacing to reduce humidity.
  • Spray zineb (0.25%), carbendazim (0.1%), or thiophanate methyl (0.1%) at 10–14 day intervals after disease onset.
Summary: Integrated Disease Management in Brinjal
  • Use resistant/tolerant varieties and certified disease-free seeds.
  • Practice crop rotation, field sanitation, and weed management.
  • Apply chemical and biological controls judiciously.
  • Monitor environmental conditions and implement timely interventions.

Ppt on Tomato Disease Overview And Management

This presentation covers the major diseases affecting tomatoes, including early blight, late blight, and various bacterial and viral diseases. Understanding these diseases is crucial for effective management and maintaining healthy crops.
Introduction to Tomato Diseases
  • Overview of diseases affecting tomatoes.
  • Importance of disease management in agriculture.
  • Focus on early blight, late blight, and bacterial diseases.
Causal Organisms of Tomato Diseases
  • Early Blight: Alternaria solani
  • Late Blight: Phytophthora infestans
  • Bacterial Wilt: Ralstonia solanacearum
  • Leaf Curl Virus: Tomato leaf curl virus
Early Blight Symptoms
  • Dark spots on older leaves, stems, and fruits.
  • Yield losses can reach 79% in severe cases.
  • Weakens plants, reducing fruit set.
Favorable Conditions for Early Blight
  • Temperatures between 15 to 27°C.
  • High humidity (>90%) and rainy weather.
  • Weak plants from June-July sowing are more susceptible.
Management of Early Blight
  • Use pathogen-free seeds and remove infected debris.
  • Water in the morning to minimize leaf wetness.
  • Implement crop rotation with non-Solanaceous crops.
Late Blight Overview
  • Caused by Phytophthora infestans.
  • Can infect leaves, stems, and fruits rapidly.
  • Historically linked to the Irish potato famine.
Symptoms of Late Blight
  • Dark brown blotches on leaves with green-gray edges.
  • Fruits develop dark, mushy spots.
  • High humidity leads to white fungal growth.
Favorable Conditions for Late Blight
  • High humidity (>90%) and low temperatures (10-25°C).
  • Cloudy weather with rainfall enhances spread.
  • Soil-borne spread through oospores.
Management of Late Blight
  • Destroy infected potato piles before planting.
  • Crop rotation with cereals to prevent recurrence.
  • Use prophylactic sprays of copper fungicides.
Follow us on Social Media