This lecture covers the essential aspects of banana (Musa spp.) cultivation, including suitable soil and climate requirements, planting methods, high density planting techniques, and effective nutrient and water management. Emphasis is placed on propagation, field preparation, intercultural operations, and maximizing productivity for commercial banana production.
Introduction to Banana
Banana (Musa spp.) is a major fruit crop and staple food in tropical regions.
Origin: South East Asia; called ‘Apple of Paradise’.
Main producing states: Tamil Nadu, Kerala, Maharashtra, Andhra Pradesh, Bihar.
Edible bananas are mostly hybrids of M. acuminata and M. balbisiana.
Fruits develop by parthenocarpy (without fertilization).
Soil and Climate Requirements
Soil:
Deep, well-drained soils rich in organic matter are ideal.
Incorporate sunhemp at 45 days to reduce nematode build-up.
Avoid cucurbitaceous vegetables as intercrops.
Objective Questions
Q1. Which two species are the main contributors to edible banana hybrids?
A. M. acuminata and M. balbisiana
B. M. paradisiaca and M. sapientum
C. M. acuminata and M. sapientum
D. M. balbisiana and M. paradisiaca
Answer: A
Q2. What is the optimal soil pH range for banana cultivation?
A. 4.0 – 5.0
B. 5.5 – 8.0
C. 7.5 – 9.0
D. 6.5 – 9.5
Answer: B
Q3. Which type of sucker is preferred for banana propagation due to its vigor and early bearing?
A. Water sucker
B. Sword sucker
C. Leaf sucker
D. Root sucker
Answer: B
Q4. What is the recommended pit size for planting banana?
A. 30 cm3
B. 45 cm3
C. 60 cm3
D. 90 cm3
Answer: B
Q5. For high density planting, what is the recommended spacing and number of plants per hectare?
A. 1.5 x 1.5 m, 4444 plants
B. 2.1 x 2.1 m, 2267 plants
C. 1.8 x 3.6 m, 4600 plants
D. 3.6 x 3.6 m, 750 plants
Answer: C
Q6. Which chemical is used for pralinage to control nematodes in banana suckers?
A. Carbendazim
B. Lindane
C. Carbofuran
D. Monocrotophos
Answer: C
Q7. What is the recommended fertilizer application schedule for N and K in banana cultivation?
A. Single application at planting
B. In 3 splits at 3rd, 5th, and 7th month
C. In 2 splits at 4th and 8th month
D. Monthly application throughout the year
Answer: B
Q8. Which micronutrient combination is sprayed at 3, 5, and 7 months after planting to improve banana yield and quality?
A. ZnSO4, FeSO4, CuSO4, H3BO3
B. ZnSO4, MgSO4, CuSO4, H2SO4
C. FeSO4, MnSO4, CuSO4, H3BO3
D. ZnSO4, FeSO4, CaSO4, H3BO3
Answer: A
Q9. Which growth regulator is sprayed at 4th and 6th month after planting to enhance banana yield?
A. 2,4-D
B. Plantozyme
C. CCC
D. GA3
Answer: C
Q10. Which crop should be avoided as an intercrop in banana plantations?
A. Sunhemp
B. Beet root
C. Elephant foot yam
D. Cucurbitaceous vegetables
Answer: D
This lecture covers fundamental concepts in agriculture, focusing on crop production, soil management, and pest control. It emphasizes the importance of horticulture practices, forestry conservation, and veterinary science in sustainable farming systems. Key topics include integrated pest management, soil fertility, and crop improvement techniques.
Introduction to Agriculture and Horticulture
Definition and scope of agriculture and horticulture.
This lecture introduces the fundamental concepts of agronomy, focusing on the definition, scope, and importance of the discipline in agriculture. It covers the objectives and branches of agronomy, highlighting its role in crop production and soil management. The content is essential for students preparing for competitive exams in agricultural sciences. Key academic terms include agronomy, crop production, soil management, farming systems, and agricultural practices.
Introduction to Agronomy
Agronomy is the science and technology of producing and using plants for food, fuel, fiber, and land reclamation.
It integrates principles from biology, chemistry, ecology, earth science, and genetics.
Agronomy focuses on improving crop yield and sustainable land use.
Scope and Importance of Agronomy
Encompasses crop production, soil management, and environmental conservation.
Essential for food security and sustainable agriculture.
Addresses challenges like soil fertility, water management, and pest control.
Objectives of Agronomy
Increase crop productivity and quality.
Optimize use of natural resources (soil, water, nutrients).
Develop sustainable and profitable farming systems.
Minimize environmental impact of agricultural practices.
Branches of Agronomy
Crop Science: Study of crop growth, development, and management.
Soil Science: Focus on soil properties, fertility, and conservation.
Weed Science: Management of unwanted plants in crop fields.
Agro-meteorology: Study of weather and climate impacts on crops.
Agronomic Practices
Soil preparation: Ploughing, harrowing, and leveling.