PREVIEW QUESTION BANK

Module Name : Agricultural Statistics-ENG Exam Date : 09-Jul-2023 Batch : 14:30-16:30

Sr. No.	Client	Question ID	Question Body and Alternatives	Marks	Neg Ma	ative arks
Objec	tive Que	estion				
	etive Que	Which of 1. M 2. Co 3. In	one of the following is not one of the features of parliamentary form of government? Jajority party rule Collective Responsibility The tegrated and Independent Judiciary The second is solution of the lower house		4.0	1.00
Ohi	ti O					
	tive Que	stion				1.00
2 2	2002	Which of nation?? 1. So 2. So 3. Se 4. De A1:1 A2:2 A3:3	of the following term implies that 'India is a neither a dependency nor a dominion of any other pocialist povereign ecular emocratic		4.0	1.00
	2003	311011			1 n	1.00
3 2		1. Oc	of the following form the maximum water composition on the earth's surface? ceans e caps laciers skes		4.0	1.00

		A3:3		
		A4:4		
Ob	jective Ques	stion		
4	2004		4.0	1.00
		Which one of the following does not fall under the category of 'biomes? 1. Forest		
		2. Sky 3. Desert		
		4. Grassland		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ob	jective Ques	stion		
5	2005		4.0	1.00
		IUCN publishes information about which of the following species as Red List of threatened species?		
		1. Endangered Species		
		2. Vulnerable Species		
		3. Extinct Species		
		4. Rare Species		
		A1:1		
		ALL		
		A2:2		
		A3:3		
		A4:4		
Ob	jective Ques	stion		
6	2006		4.0	1.00
		Who was the first Indian to win an individual medal in Olympics?		
		1. Milkha Singh		
		2. Karnam Malleshwari		
		3. P. T. Usha		
		4. K. D. Jadhav		
		A1:1		
		A2:2		
		A3:3		

		A4:4		
01:				
	ective Que 2007	stion	4.0	1.00
	2007	Who among the following reformers founded "Arya Samaj"? 1. Raja Ram Mohan Roy	4.0	1.00
		2. Swami Dayananda Saraswati		
		Atmaram Pandurang A. Ishwarchandra Vidyasagar		
		4. Isriwa chandra vidyasagai		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ective Que	stion		
	2008		4.0	1.00
		What does "Triratna" mean in Buddhism?		
		1 - 1 - 1 - 1		
		1. Tripitaka 2. Buddha, Dhamma (dharma), Sangha		
		3. Satya, Ahimsa, Karuna		
		4. Sheel, Samadhi, Sangha		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Que	stion		
	2009		4.0	1.00
		Who started the Indian Reforms Association?		
		1 Names Comp		
		Narayan Guru Swami Vivekananda		
		3. Krishna swami Aiyar		
		4. Keshav Chandra Sen		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ective Oue	4:		

10	2010		4.0	1.00
		Consider the following statements		
		(A). UN General Assembly has declared 2023 as the international year of millets		
		(B). Odisha govt. ropes in FICCI to promote millets globally		
		(C). Odisha Millets Mission is a flagship programme of the Odisha government to revive millets in farms		
		and on plates		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A) and (B) only.		
		2. (B) and (C) only.		
		3. (A) and (C) only.		
		4. (A), (B) and (C).		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ob	jective Que	tion		
11			4.0	1.00
		Phomopsis blight occurs in which of the following crops?		
		1. Brinjal		
		2. Bajra		
		3. Sugarcane		
		4. Potato		
		A1:1		
		A2:2		
		AZ:Z		
		A3:3		
		A4:4		
OF	jective Que	stion		
12			4.0	1.00
12	2012	Endemic pests can be described as?	1.0	1.00
		1. Pest occurs in a few specific area.		
		2. Pest occurs in same area, year after year.		
		3. Pest occurs frequently in current season in abundance.		
		4. Pest occurs in severe form.		
		A1:1		
		A1.1		
		A2:2		
		A3:3		
		د. تم		

A4:4			
Which country is the largest producer of raw silk? 1. Japan 2. India 3. China 4. South Korea A1:1 A2:2 A3:3	4.0	1.00)
A4:4			
Question			
	4 0	1 00	0
Transfer of Ownership is the example of which utility 1. Time utility 2. Place utility 3. Possession utility 4. Form utility A1:1 A2:2 A3:3 A4:4	7.0		
What happens to the total number of chromosomes during mitotic cell division? 1. gets doubled 2. gets halved 3. remains the same 4. divides into four A1:1 A2:2 A3:3 A4:4	4.0	11.00)
3	Obesides Observed Observed Observed Which country is the largest producer of raw silk? 1. Japan 2. India 3. China 4. South Korea Al: 1 A2: 2 A3: 3 A4: 4 Transfer of Ownership is the example of which utility 1. Time utility 2. Place utility 3. Possession utility 4. Form utility Al: 1 A2: 2 A3: 3 A4: 4 Observed What happens to the total number of chromosomes during mitotic cell division? 1. gets doubled 2. gets halved 3. remains the same 4. divides into four Al: 1 A2: 2 A3: 3	Operation	-Question Which country is the largest producer of raw silk? 1. Japan 2. India 3. China 4. South Korea A1: 1 A2: 2 A3: 3 A4: 4 1. Time utility 3. Possession utility 4. Form utility A1: 1 A2: 2 A3: 3 A1: 4 A1: 1 A2: 2 A3: 3

	ctive Ques	stion		
	2016	What is the minimum forest cover to be maintained as per the National Forest Policy, 1988? 1. One-half 2. One-third 3. One-fourth 4. Two-third A1: 1 A2: 2 A3: 3 A4: 4	4.0	1.00
	ctive Ques	stion		
	2017	Who among the following is known as the "Father of Agronomy"? 1. Stephen Hales 2. Gregor Johann Mendel 3. Peter Decresenzi 4. D N Walia A1:1 A2:2 A3:3 A4:4	4.0	1.00
18	cetive Ques 2018	Which of the following plant hormones helps in shoot elongation? 1. Auxin 2. Gibberellic acid 3. Abscisic acid 4. Cytokinin A1:1 A2:2 A3:3 A4:4	4.0	1.00
	ective Ques	stion		
19	2019		$\ 4.0$	1.00

Ohio	ective Ques	Select from the following the chemical property of soil 1. Colour 2. pH 3. Texture 4. Structure A1:1 A2:2 A3:3 A4:4		
	2020		4 0	1.00
	2020	The process of separating quality grains from chaff is called as 1. Winnowing 2. Threshing 3. Harvesting 4. Tilling A1:1 A2:2 A3:3 A4:4		1.00
Obje	ective Ques	tion		
21	191001	The mean and the median of the ten numbers in increasing order 10, 22, 26, 29, 34, x, 42, 67, 70, y are 42 and 35 respectively, then y/x is equal to 1. 9/4 2. 7/2 3. 8/3 4. 7/3 A1:1 A2:2 A3:3 A4:4	4.0	1.00
	ective Ques	tion	4.0	1.00
122	191002		4.0	1.00

Objective Question

If X follows Normal distribution with mean 4 and variance 100, then the distribution of $Y = \frac{1}{2} \left(\frac{X-4}{10} \right)^2$ is 1. Exponential with mean 4 2. Chi square with one degree of freedom 3. Gamma distribution with parameter 1/2 4. Normal with mean 4 and variance 10 A1:1 A2:2 A3:3 A4:4Objective Question 23 191003 If the correlation coefficients of zero order in a set of 3 variates were equal to ρ each, then the multiple correlation $R_{1.23}^2$ is equal A1:1 A2:2 A3:3 A4:4 Objective Question 24 191004 4.0 1.00 X is a random variable with EX = 3 and $EX^2 = 13$. If Q be the probability of the event: $-2 \le X \le 8$, then which one of the following statements follows from Chebychev's inequality? 1. $Q \ge 0.84$ $2. Q \le 0.84$ $3. Q \ge 0.36$ $4. Q \le 0.16$ A1:1 A2:2 A3:3A4:4

25	191005		4.0	1.00
		Let 4, 2, 2, 5, 1, 2, 4, 3, 2, 5 be a sample of size 10 from a population following Poisson (λ) distribution. The UMVUE of λ is		
		1.40		
		1. 40 2. 8		
		3. 4		
		4.3		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	191006		4 0	1.00
	191000	Consider the following statements for a test of significance:		1.00
		(A). Size = 1 - P (Type I error)		
		(B). Power = 1 - P (Type II error)		
		(C). Power = P (Type II error)		
		(D). Size = P (Type I error)		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A) and (B) only.		
		2. (C) and (D) only.		
		3. (A) and (C) only.		
		4. (B) and (D) only.		
		A1:1		
		Al. I		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Ques	tion		
	191007		4.0	1.00

167_B2_Live_AgriculturalStatistics_1-120.html Consider the 2 x 2 contingency table on two attributes A and B A_1 A_2 B₁ 20 10 30 40 B_2 What is the value of χ^2 for testing the independence of the attributes A and B? 1.0.79 2.0.81 3. 0.83 4.0.85 A1:1 A2:2 A3:3 A4:4Objective Question 28 191008 Which of the following tests should be employed for deciding whether or not two samples come from the same skewed parent population? (A). Paired t-test (B). t-test (C). Run test (D). Sign test Choose the *correct* answer from the options given below: 1. (A) and (C) only. 2. (C) and (D) only. 3. (B), (C) and (D) only. 4. (A), (C) and (D) only. A1:1 A2:2 A3:3

Obje	ective Ques	tion

A4:4

4.0 1.00 29 191009

		A test in which decision a 1. Bayes' test 2. Likelihood ratio tes 3. Sequential probabi 4. Student's ratio test	lity ratio test	h successive observa	ation is known as			
		A1:1						
		A2:2						
		A3:3						
		A4:4						
	ctive Ques	tion						
30	191010	The following ANOVA tal	ble is obtained for a two va	ariable linear regress	ion:	4.0	0 1	1.00
		Source of variation	Degrees of freedom	Sum of squares	7			
		Regression	1	122.5	-			
		Residual	3	77.5	_			
		Total	4	200	_			
		The correlation between 1. 0.3875 2. 0.6125 3. 0.6225 4. 0.7826 A1: 1 A2: 2 A3: 3 A4: 4	the regressor and the regr	essand is				
	ctive Ques	tion				14.0	0 1	1.00
١,		The total number of second 1. 20 2. 15 3. 10 4. 5	ond and third order interac	tions in 2 ⁵ factorial e	experiment are	14.0		1.00
		A2:2						

		A3:3		
		A4:4		
	ective Ques	tion		
32	191012		4.0	1.00
		Which one of the following is reduced by confounding in a factorial experiment?		
		1. Non-sampling error		
		2. Sampling error		
		3. Standard error		
		4. Experimental error		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
01:	<u>.</u>			
	ective Ques	tion	4.0	1.00
	171013	The efficiency of SRSWOR with respect to SRSWR is (here N and n are population and sample sizes respectively)	7.0	1.00
		$1.\frac{N-n}{N-1}$		
		$2.\frac{N-1}{n-1}$		
		3. $\frac{n-1}{N-1}$		
		$4.\frac{N-1}{N-n}$		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obi	ective Ques	tion		
	191014		4.0	1.00

A simple random sample of size 10 is selected with replacement from a population of size 100. What is the expected number of unique elements in the sample?

$$1.100 \times \left(\frac{99}{100}\right)^{10}$$

2. 100
$$\times \left[1 - \left(\frac{99}{100}\right)^{10}\right]$$

$$3.100 \times \left(\frac{9}{10}\right)^{10}$$

$$4.100 \times \left(1 - \frac{99}{100}\right)^{10}$$

A1:1

A2:2

A3:3

A4:4

Objective Question

35 191015 In large samples, with simple random sampling, the ratio estimator of the population mean is more precise than the sample mean. If suppose the correlation coefficient between X and Y, $\rho > 3/8$, then the relationship between C_x and C_y is (here, C_x and C_y) are coefficients of variation of x and y respectively)

 $1. C_y = C_x$

2. $C_y = 2C_x$ 3. $3C_y = 4C_x$

 $4.4C_{V} = 3C_{X}$

A1:1

A2:2

A3:3

A4:4

Objective Question

36	191016		4.0	1.	.00
		In families of three children, what is the probability of finding the oldest child to be a girl and the youngest, a boy?			
		1. 1/2			
		2. 1/3			
		3. 1/4			
		4. 1/6			
		A1:1			

		A2:2		
		A3:3		
		A4:4		
Obie	ctive Que	stion		
	191017		4.0	1.00
		A type of allelic interaction in which the phenotype of the heterozygote is outside the phenotypic limit of the corresponding homozygotes is called 1. Complete dominance 2. Incomplete dominance 3. Overdominance 4. Additive genes		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Que	stion		
	191018		4.0	1.00
		Yellow body colour in <i>Drosophila</i> is governed by a sex-linked recessive gene; wild-type colour is produced by its dominant allele. A sample from a Hardy-Weinberg population contained 1021 wild-type males, 997 wild-type females, and 3 yellow males. The percentage of gene pool represented by the yellow allele is estimated to be 1. 0.04 2. 0.16 3. 0.21 4. 0.29		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Que	stion		
39	191019		4.0	1.00

		Let R be a relation schema and let X and Y be non-empty sets of attributes in R. We say that an instance r of R satisfies the following for every pair of tuples t ₁ and t ₂ in r: If t ₁ :X = t ₂ :X, then t ₁ :Y = t ₂ :Y The above is a kind of integrity constraint that generalizes the concept of a key called 1. No Dependency 2. Independency 3. Transitive Dependency 4. Functional Dependency		
		A1:1 A2:2		
		A3:3		
		A4:4		
	ective Ques	tion		1.00
40	191020	Neighbor-joining method is used for 1. Carbohydrate Structure Prediction 2. Protein Structure Prediction 3. Phylogenetic Tree Construction 4. Primer Designing	4.0	1.00
		A1:1		
		A2:2 A3:3		
		A4:4		
	ective Ques	tion		
41	191021	Which of the following is miRNA sequence database? 1. EMBL 2. miRanda 3. miRBase 4. miRData	4.0	1.00
		A1:1		
		A2:2		
		A3:3		
		A4:4		

	Objective Question			
42	191022		4.0	1.00
		RNA is made up of following molecules except		
		1. Phosphate		
		2. Pentose Sugar		
		3. Thymine		
		4. Uracil		
		41 1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Ques	tion		
43	191023		4.0	1.00
		At what position of DNA, Phosphate is attached?		
		1. 1'		
		2. 2'		
		3. 3'		
		4. 5'		
		7.3		
		A1:1		
		A2:2		
		n2 . 2		
		A3:3		
		A4:4		
		A4:4		
Obj	ective Ques	tion		
	191024		4.0	1.00
		Which of the following molecules takes part in splicing?		
		which of the following molecules takes part in splicing:		
		1. Pre-mRNA		
		2. tRNA		
		3. miRNA		
		4. síRNA		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohi	ective Ques	tion		
	191025	NOM	40	1.00
"	171023		-1.0	1.00

		Dynamic Programming algorithm is used in 1. Protein-protein interaction network 2. Pairwise Alignment of nucleotide sequences 3. 2D Structure Prediction of protein 4. 3D Structure Prediction of protein A1:1 A2:2 A3:3 A4:4		
	ective Ques	tion	10.	
46	191026		4.0	1.00
		In comparison to Position Specifiic Scoring Matrices (PSSM), Hidden Markov Model (HMM) is		
		1. Equally sensitive to detect homology		
		2. More sensitive to detect homology		
		Less sensitive to detect homology Not able to detect homology		
		4. Not able to detect nomology		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ective Ques	tion		
	191027		4.0	1.00
		Which of the following is a repository for 3D structure of macromolecules?		
		1. EMBL-Bank		
		2. RefSeq		
		3. PDB		
		4. Swiss-Prot		
		A1:1		
		AL. I		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Ques	tion		
	191028	uv.i	4.0	1.00

		Consider the following statements about BLOSUM (BLOcks SUbstitution Matrix) matrices: (A). It was first introduced by Henikoff and Henikoff.		
		(B). Local multiple alignments of more distantly related sequences were used to create BLOSUM.		
		(C). BLOSUM matrices are derived from PROSITE signatures of the BLOCKS database.		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A) and (B) only 2. (B) and (C) only 3. (A) and (C) only 4. (A), (B) and (C)		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohi	ective Ques	tion		
	191029	suon	4.0	1.00
		Given below are two statements: Statement (I): Orthologs are homologous sequences in different species that arose from a common ancestral gene during speciation. Statement (II): Paralogs are homologous sequences that arose by a mechanism such as gene duplication. In light of the above statements, choose the most appropriate answer from the options given below.		
		1. Both Statement (I) and Statement (II) are true. 2. Both Statement (I) and Statement (II) are false. 3. Statement (I) is true but Statement (II) is false. 4. Statement (I) is false but Statement (II) is true.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Ques	stion		
_	191030		4.0	1.00

		Match List-I	with List-II		
		List-I	List-II		
		(A). Geno3D	(I). A web-based GenBank sequence submission tool		
		(B). PAUP	(II). Comparative protein structure modelling server		
		(C). Rasmol	(III). Standard program for phylogenetic analysis		
		(D). BankIT	(IV). Multi-conformer docking program		
		(E). FRED	(V). Molecular viewer		
			correct answer from the options given below:		
		2. (A) - (II 3. (A) - (II	I), (B) - (IV), (C) - (V), (D) - (I), (E) - (II)), (B) - (IV), (C) - (V), (D) - (I), (E) - (III) I), (B) - (V), (C) - (IV), (D) - (II), (E) - (I)), (B) - (III), (C) -(V), (D) - (I), (E) - (IV)		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obj	ective Que	stion			
51	191031	Which of the	following cannot be used for protein structure prediction by comparative modelling?	4.0	1.00
		1. 3Djigsa 2. ESyPre 3. Swiss-N 4. MEGA	d3D Model		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obj	ective Que	stion			
52	191032			4.0	1.00

Given below are two statements regarding methods for reconstructing phylogenetic trees:

Statement (I): The neighbour-joining method does not assume all sequences have the same constant rate of evolution over time, and this method is related to the concept of minimum evolution.

Statement (II): The Fitsch-Margoliash method does not make assumptions of constant mutation rate, and this method produces a rooted ultrameric tree.

In light of the above statements, choose the most appropriate answer from the options given below.

- 1. Both Statement (I) and Statement (II) are true.
- 2. Both Statement (I) and Statement (II) are false.
- 3. Statement (I) is true but Statement (II) is false.
- 4. Statement (I) is false but Statement (II) is true.

A1:1

A2:2

A3:3

A4:4

Objective Question 53 191033

3.	171033		7.0	1.00	
		What is cout in C++?			
		1. Function			
		2. Object			
		3. Macro			
		4. Operator			
		A1:1			
		A2:2			
		A3:3			
		A4:4			

Objective Question

54 191034

Given below are two statements:

Statement (I): Techniques based on self-organizing maps (SOMs) which is a form of supervised neural network, can be used for analysis of microarray gene expression data.

Statement (II): Self-organizing tree algorithm (SOTA) determines the number of clusters required in gene expression data analysis.

In light of the above statements, choose the most appropriate answer from the options given below.

- 1. Both Statement (I) and Statement (II) are true.
- 2. Both Statement (I) and Statement (II) are false.
- 3. Statement (I) is true but Statement (II) is false.
- 4. Statement (I) is false but Statement (II) is true.

4.0 1.00

4.0 1.00

	A1:1		
	A2:2		
	A3:3		
	A4:4		
Obia stina Once	£		
Objective Ques		4.0	1.00
191033	Which HTML Tag is used to enclose any number of Javascript statements in HTML document:	1.0	1.00
	1. code Tag		
	2. script Tag		
	3. title Tag		
	4. body Tag		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
	·		
Objective Ques		4.0	1.00
30 191030	Software products need perfective maintenance for which of the following reasons ?	4.0	1.00
	software products need perfective maintenance for which of the following reasons :		
	1. To rectify bugs observed while the system is in use		
	2. When the customers need the product to run on new platforms		
	3. To support the new features that users want it to support		
	4. To overcome wear and tear caused by the repeated use of the software		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
Objective Ques	stion		
57 191037		4.0	1.00
	The algebraic function of the Exclusive-OR (XOR) operation is:		
	(Where ' represents Complement Operation)		
	1. F = A . B		
	2. F = A' B' + A B		
	3. F = A' B + A B'		
	4. F = A + B		
	A1:1		
n 1			

		A2:2		
		A3:3		
		A4:4		
	Objective Que	tion.		
	8 191038		4.0	1.00
	191000	In ICAR-ERP, what does ERP stands for?		1.00
		1. Entrepreneur Resource System		
		Enterprise Resource Planning Enterprise Resilient Planning		
		4. Employee Response System		
		4. Employee Response System		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	Objective Ques	stion		
5	9 191039		4.0	1.00
		The Python library used for drawing graphs, high-defined figures and charts is		
		1. TensorFlow		
		2. Pandas		
		3. Numpy		
		4. Matplotlib		
		300 500 NO. N # 100 General		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
C	Objective Que	stion		
	0 191040		4.0	1.00
		Which of the following is not a Big Data Analytics Tool:		
		1. Apache Hadoop 2. PHP		
		3. Mongo DB		
		4. Cassandra		
		A1:1		
		A1.1		
		A2:2		

		A3:3		
		A4:4		
	ective Ques	stion		
61	191041	The method that provides a simple, straightforward procedure for simplifying Boolean expressions is	4.0	1.00
		1. Google Map		
		2. Karnaugh Map		
		3. Hash Map		
		4. Tree Map		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Ques	stion		
62	191042		4.0	1.00
		Following documents have an implicit structure or hierarchy:		
		(A) HTML		
		(B) XML		
		(C) XHTML		
		Choose the correct answer from the options given below:		
		1. (A), and (B) only		
		2. (A), and (C) only		
		3. (A), (B) and (C)		
		4. (B) and (C) only		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohi	ective Ques	ition		
	191043		4.0	1.00
		Which header file is required in C++ to use OOP?		
		1. assert.h		
		2. stdlib.h		
		3. iostream.h		
		4. stdio.h		
		A1:1		

		A2:2		
		A3:3		
		A4:4		
L				
	Objective Que	stion		
6	191044		4.0	1.00
		Which is the correct syntax of inheritance?		
		1. class base_classname :access derived_classname{ /*define class body*/ };		
		 class derived_classname : access base_classname{ /*define class body*/ }; 		
		3. class derived_classname : base_classname{ /*define class body*/ };		
		4. class base_classname : derived_classname{ /*define class body*/ };		
		A1:1		
		A2:2		
		AZ.Z		
		A3:3		
		A4:4		
	Objective Que	stion		
6	5 191045		4.0	1.00
		An algorithm that runs in O(1) time is the, O(log N) is, O(N) is, and O(N^2) is		
		1. Best, Bad, Fair, Very Good		
		2. Bad, Fair, Very Good, Best		
		3. Best, Very Good, Fair, Bad		
		4. Bad, Very Good, Best , Fair		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
C	Objective Que	stion		
6	6 191046		4.0	1.00
		There are several factors that affect the efficiency of lookup operations in a hash table. Which of the following is not one of		
		those factors?		
		1. Number of elements stored in the hash table		
		2. Size of elements stored in the hash table		
		3. Number of buckets in the hash table		
		4. Quality of the hash function		
		A1 : 1 		
		A2:2		

		A3:3			
		A4 : 4			
	ective Que	stion			
67	191047			4.0	1.00
		Goal	Threat		
		A. Confidentiality	I.Tampering with Data		
		B. Integrity C. Availability	II. Denial of Service III. Exposure of Data		
		1. (A) - (I), (B) - (II), (C) 2. (A) - (III), (B) - (I), (C) 3. (A) - (III), (B) - (I), (C) 4. (A) - (II), (B) - (I), (C) A1:1 A2:2 A3:3 A4:4) - (II) C) - (I)		
		A4:4			
	191048	stion		10	1.00
Ohi	ective Que	known as 1. Firewall 2. Intrusion Detection 3. Least Privilege 4. Data Masking A1:1 A2:2 A3:3 A4:4	e that involves limiting the types of operations that a program can perform on a computer system is		
	191049	stion		4.0	1.00

		Match List-I with List-II			
		List-I	List-II		
		(A).The bits of the codeword are numbered consecutively, starting with bit 1 at the left end, bit 2 to its immediate right, and so on.	(I). Binary convolutional codes		
		(B).In a convolutional code, an encoder processes a sequence of input bits and generates a sequence of output bits.	(II). Hamming codes		
		(C). The linear block codes, which are often systematic too and operate on <i>m</i> bit symbols.	(III). Low-Density Parity Check codes.		
		(D). The linear block codes, in which each output bit is formed from only a fraction of the input bits.	(IV).Reed-Solomon codes		
		Choose the correct answer from the options given below: 1. (A) - (I), (B) - (II), (C) - (III), (D) - (IV) 2. (A) - (IV), (B) - (II), (C) - (III), (D) - (II) 3. (A) - (IV), (B) - (IV), (C) - (IV), (D) - (IV)		1	
		3. (A) - (II), (B) - (I), (C) - (IV), (D) - (III) 4. (A) - (II), (B) - (III), (C) - (IV), (D) - (I)			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ective Que	stion			
70	191050	Which of the following is NOT TRUE about Ring Topology of Computer Networks?		4.0	1.0
		The data flows in an anti-clockwise direction.			
		2. The data flows in an endless loop.			
		3. It has no terminated end.			
		4. It is unidirectional.			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	<u></u>				
	1003551	stion		4.0	1.0
		If X_1 , X_2 , X_3 ,, X_n are a random sample from a Bernoulli distribution with parameter α then the unic	que UMVUE of $α$ is its		
		1. Mean			
		2. Variance			
		3. Median			
		4. Mode			

П		11		II.	II
			A1:1		
			A2:2		
			A3:3		
			A4:4		
li	Obje	ctive Ques	tion		
		1003552		4.0	1.00
			Given that irradiated onion seeds exhibit on an average mutation rate of 0.5%, what is the probability of getting at least one mutant seeds if 100 of them are irradiated ($e^{-0.005}$ =1 & $e^{-0.5}$ =0.606)		
			1. 0.606		
			2. 0.404		
			3. 0.394		
			4. 0.596		
			4. 0.390		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
	Obje	ctive Ques	tion		
li	73	1003553		4.0	1.00
			Find the probability of getting at least 5 heads when six coins are thrown simultaneously in an experiment.		
			1. 0.119		
			2. 0.109		
			3. 0.881		
			4. 0.891		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
		ctive Ques	tion		
	74	1003554		4.0	1.00
			Moment Generating Function (MGF) of geometric distribution with probability of success as p and failure as q is expressed as		
			1. p(1 – qe ^t)		
			2. $p/(1 - qe^t)$		
			3. $q/(1 - pe^t)$		
			4. q(1 – pe ^t)		
			A1:1		
					II

		A2:2 A3:3 A4:4		
	ective Ques	tion		
75	1003555	Suppose X is an uniform variate with the parameters 6 and 10, then its median and standard deviation are respectively worked out to be 1. 8 and 1.15 2. 2 and 1.15 3. 8 and 0.15	4.0	1.00
		4. 2 and 0.15 A1 : 1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Ques	tion		
	1003556	Fisher-Behrens problem is employed to test 1. equality of two variances from normal populations with known mean 2. equality of two means from normal populations with known variances 3. equality of two means from normal populations with unknown variances 4. equality of two variances from normal populations with unknown mean A1:1 A2:2 A3:3 A4:4	4.0	1.00
	1003557		4.0	1.00
	1003337	Mean pest population count before and after a chemical spray as treatment is tested for its significance based on 1. Chi-square test 2. ANOVA 3. Paired t-test 4. Student's t-test A1:1	7.0	1.00

II	II		II	II
		A3:3		
		A4:4		
Obj 78	1003558	stion	4.0	1.00
76	1003338	Which of the following is incorrect, if an experimenter wishes to increase the power of a statistical test? 1. Increase the sample size and level of significance 2. Narrow down the difference between the null and alternative values 3. Increase the difference between the null and alternative values 4. Increase the sample size and decrease the variability in the sample	4.0	1.00
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Que	stion		
79	1003559		4.0	1.00
		If a random variable X is distributed as N(0,1), Y is a $\chi^2(v)$ random variate, and X & Y are independent then $(X/\sqrt{Y/v})$ is		
		distributed as 1. $\chi^2(v-1)$ 2. $t(v)$ 3. $\chi^2(v-2)$ 4. $t(v-1)$		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Que			
80	1003560	Let $X \sim U(0,1)$. Then the distribution of Y=-2 log X is	4.0	1.00
		1. $\chi^2(1)$		
		2. $\chi^2(2)$		
		3. N(0,1)		
		4. U(1,2)		
		A1:1		
		A2:2		
		A3:3		

		A4:4		
Obje	ctive Que	stion		
	1003561	A quantity to be added to $\Sigma d_{i'}^2$ where d_i is the difference between the ranks of the two variables for the $l^{\epsilon h}$ observation and the summation is over all such observations in case of computing rank correlation with repeated rank (m being the number of times a rank is repeated) is 1. $m^2(m-1)/12$ 2. $m^2(m^2-1)/12$ 3. $m(m^2-1)/12$ 4. $(m^3-m^2)/12$	4.0	1.00
		A3:3 A4:4		
Obje	ctive Que	stion		
	1003562	In a regression model, given that R ² = 0.8, number of predictors=20 and sample size=101, compute the adjusted R ² 1. 0.25 2. 0.75 3. 0.8 4. 0.78 A1:1 A2:2 A3:3 A4:4	4.0	1.00
	ctive Que	stion		
83	1003563	Identify a best step-wise regression model based on the pairs of P (number of predictors) and Cp (Mallows' stat) values given as 1. P=2 & Cp=2.9 2. P=3 & Cp=2.9 3. P=2 & Cp=40.5 4. P=3 & Cp=40.5 A1:1 A2:2 A3:3	4.0	1.00

		A4:4		
Obj	ective Ques	tion		-
	1003564		4.0	1.00
		Non-parametric one-way ANOVA is performed using		
		1. Friedman's test		
		2. Mann-Whitney test		
		3. Kruskal-Wallis test		
		4. Sign test		
		4. Sign test		
		A1:1		
		A2:2		
		A3:3		
		A3.3		
		A4:4		
Obi	ective Ques	tion		
	1003565		4.0	1.00
	1000000	If two dice are thrown, then the probability that the sum of outcome is greater than 8 is		
		it two dice are thrown, then the probability that the sum of outcome is greater than 8 is		
		1. 1/6		
		2. 1/12		
		2. 7/12		
		3. ⁵ / ₃₆		
		4. ⁵ / ₁₈		
		A1:1		
		A2:2		
		n2.2		
		A3:3		
		A4:4		
	ective Ques	tion		
86	1003566		4.0	1.00
		Given below are two statements regarding Principal Component Analysis (PCA):		
		Statement (I): All principal components are uncorrelated from one another		
		Statement (i): All principal components are uncorrelated from one another		
		Statement (II): PCA using the covariance function should only be considered if all of the variables have the same units of		
		measurement		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		1. Both Statement (I) and Statement (II) are correct		
		2. Both Statement (I) and Statement (II) are incorrect.		
		3. Statement (I) is correct but Statement (II) is incorrect.		
		4. Statement (I) is incorrect but Statement (II) is correct.		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
Obj	ective Ques	tion		
87	1003567		4.0	1.00
		Given below are two statements:		
		Statement (I): The positive random variable X is said to have a log-normal distribution if $log_e X$ is normally distributed		
		Statement (II): If χ has a normal distribution, then e^{χ} follows log-normal distribution		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		1. Assumes ordinal data		
		2. sample size > no of factors		
		3. outlier free		
		4. no perfect multicollinearity between the variables		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obi	ective Ques	tion		
	1003568		4.0	1.00
		Consider the following pairs of statements regarding non-parametric tests:		
		A. Cochran Q test- k related samples		
		B. Sign test- k independent samples		
		C. Wilcoxon signed rank test- 2 independent samples		
		D. Friedman's test-k related samples		
		Which of the above statements are correct?		
		1. A, B and C only		
		2. A, B and D only		
		3. A and B only		
		4. All are correct		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
OI-	ective Ques	tion		
	1003569	uuii ——————————————————————————————————	4.0	1.00

		Pascal distribution is also known as 1. Gamma distribution 2. Negative-binomial distribution 3. Geometric distribution 4. Beta distribution		
		A2:2 A3:3		
		A4:4		
	ctive Ques			
90	1003570		4.0	1.00
		Identify the statistical test used for testing equality of k population variances		
		1. Independent t-test		
		2. Paired t-test		
		3. Bartlett test		
		4. Run test		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Ques	tion		
	1003571		4.0	1.00
		Consider the following statements:		
		A. Test for randomness- run test		
		B. Test for normality- White test		
		C. Test for auto-correlation- Durbin-Watson test		
		And translational and the second seco		
		D. Test for homoscedasticity- Shaprio-wilk test		
		Which of the above statements are incorrect?		
		1. A, B & C only		
		2. A, B & D only		
		3. B and D only		
		4. All are incorrect		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
	ctive Ques		4.0	1.00
1	1003372	The association between two attributes A and B is positive if	7.0	1.00
		$1.\frac{(A)(B)}{N} > (AB)$		
		$2.\frac{(A)(B)}{N} < (AB)$		
		2. $\frac{(A)(B)}{N} < (AB)$ 3. $\frac{(A)(B)}{N} = (AB)$ 4. $\frac{(A)(B)}{N} \neq (AB)$		
		$4. \frac{(A)(B)}{M} \neq (AB)$		
		A1:1		
		A2:2		
		A2:2		
		A3:3		
		A4:4		
	ctive Ques			
93	1003573		4.0	1.00
		Consider the following statements:		
		A. Number of sources and demands need not be equal		
		B. Initial basic feasible solution can be obtained by North-west corner rule method		
		C. Optimum solution is arrived using Modified distribution (MODI) method		
		Which one of the following is true in case of transportation problem in operation research?		
		1. All are true		
		2. A, and B only		
		B and C only All are incorrect		
		A1:1		
		A2:2		
		n2 . 2		
		A3:3		
		A4:4		
	ctive Ques			
94	1003574		4.0	1.00
11			11	

		In a 2 ³ factorial experiment with three factors A, B and C, the interaction AC is confounded. Then, if in standard code notations the blocks within replicaitons are written, in which of the following arrangements AC is confounded with blocks? 1. Block 1: (1), (ab), (ac), (bc) & Block 2: (a), (b), (c), (abc) 2. Block 1: (1), (a), (bc), (abc) & Block 2: (b), (c), (ab), (ac) 3. Block 1: (1), (c), (ab), (ac) & Block 2: (a), (b), (bc), (abc) 4. Block 1: (1), (b), (ac), (abc) & Block 2: (a), (c), (ab), (bc) A1: 1 A2: 2 A3: 3 A4: 4		
Obje	ective Ques	stion]
	1003575	Let there be six plots of land denoted by P ₁ , P ₂ , P ₃ , P ₄ , P ₅ and P ₆ . The first three plots receive one treatment, say t ₁ and the last three, another treatment, say, t ₂ . Suppose, further that the plots P ₁ and P ₄ receive one level of irrigation, P ₂ and P ₅ , a second level, and P ₃ and P ₆ receive a third level of irrigation. Let y ₁ , y ₂ , y ₃ , y ₄ , y ₅ and y ₆ denote the observations on a character recorded from the above six plots in that order. Then the comparison (y ₁ -y ₂) - (y ₄ - y ₅) is 1. free from any variation due to the treatments but not free from variations due to irrigation 2. free from any variation due to the irrigation but not free from variations due to treatments 3. free from any variability caused by both treatments and irrigation 4. neither free from any variability due to the treatments nor from variability due to irrigation Al : 1 A2 : 2 A3 : 3 A4 : 4	4.0	1.00
Obje	ective Ques	stion		
96	1003576		4.0	1.00

Match List-I with List-II

List-I	List-II		
(A). Randomization	(I). Partitions total variation into controlled and error variations		
(B). Replication	(II). Contains contributions due to uncontrolled factors		
(C). Local control	(III). Ensures independence of observations		
(D). ANOVA	(IV). Reduces the error variance		
(E). Experimental Error	(V). Provides an estimate of error variance		

Choose the correct answer from the options given below:

- 1. (A)- (IV), (B) (III), (C) (II), (D) (V), (E) (I)
- 2. (A)- (III), (B) (V), (C) (IV), (D) (I), (E) (II)
- 3. (A)- (V), (B) (III), (C) (IV), (D) (II), (E) (I)
- 4. (A)- (III), (B) (V), (C) (IV), (D) (II), (E) (I)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

97 1003577

Consider the following statements and identify which of them pertain to "strip plot design" rather than "split plot design" assuming two factors (and their corresponding effects) viz. E as "main plot" and F as "subplot" in conventional nomenclature.

- A. The E, F and EF effects are estimated with equal precision.
- B. The design sacrifices the precision on the effects of main plot E and also of subplot F in order to provide higher precision on the interaction EF.
- C. The design enables factors that require relatively large amounts of material and factors that require only small amounts of material to be combined in the same experiment.
- D. The design may be convenient for field experiments where it is necessary to test both factors on relatively large areas.
 - 1. A and B only
 - 2. A and C only
 - 3. B and D only
 - 4. C and D only
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

4.0 1.00

1003578						
		ng ANOVA table of t			_	
	Sources of variation	Degrees of freedom	Sum of Squares	Mean Sum of Squares	F	
	Rows	df _r	72	MS _r	2	
	Columns	df _c	А	36	Fc	
	Treatments	df _t	180	MS _t	В	
	Error	6	SSE	12		
	Total	df _T	SS _T			
	The values of A and 1. 124 and 5 2. 108 and 3 3. 108 and 5	B in the above LSD A	NOVA table are	respectively		
	4. 124 and 2					
	A2:2					
	A3:3					
	A4:4					
jective Que	estion					
1003579						

The table below shows the yields obtained in a Randomized Block Design (RBD) on four wheat types (treatments) in five replications (blocks), in which one value y_{D1} is missing. Also given are the treatment totals, block totals and the grand total computed from the available known observations.

	-	-	-	
				Treatment totals ⁻
.3 34	.0 34.3	3 35.0	36.5	172.1
.3 33	.0 36.3	3 36.8	34.5	173.9
.8 34	.3 35.3	3 32.3	35.8	168.5
26	.0 29.8	3 28.0	28.8	*112.6
.4 127	.3 135.7	7 132.1	135.6	*627.1
)	0.8 34 D1 26	33.0 36.3 0.8 34.3 35.3 D1 26.0 29.8	3.3 33.0 36.3 36.8 0.8 34.3 35.3 32.3 0.1 26.0 29.8 28.0	3.3 33.0 36.3 36.8 34.5 0.8 34.3 35.3 32.3 35.8

Then the value of yD1 using Yates method of estimating the missing observations in this RBD set up is

1.26.79

2. 25.44

3.26.44

4.25.79

A1:1

A2:2

A3:3

A4:4

101	1003581		4.0	1.00
101	1003581	Let in a Balanced Incomplete Block Design (BIBD), v be the number of treatments, b be the number of blocks, k be the block size, v be the number of replications and v be the number of blocks in which any pair of treatments appear together, then the BIBD is said to be symmetric if 1. v be v and v erecall v if v and v erecall v is v and v erecall v and v erecall v if v is v and v erecall v is v and v erecall v if v is v and v erecall v is	4.0	1.00
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Que	stion		
102	1003582	In dairy husbandry, a cross-over design was used to compare the effects of two 'feeding rations' on the amount and quality of milk produced by cows. On each of the 10 cows considered for the experiment, since cows vary greatly in their milk production over time, each ration was tested by feeding it during either the first or the second half of the 'period of lactation', so that each cow itself has been taken as a separate 'animal replicate pair'. Then the degrees of freedom of error and total in the ANOVA of such a design are respectively 1. 4 and 19 2. 3 and 9 3. 8 and 19 4. 5 and 19 A1:1 A2:2 A3:3 A4:4	4.0	1.00
	ective Que	stion		
103	1003583	Consider the table:	4.0	1.00
		Stratum I II III		
		Size 200 300 300		
		Standard deviation 6 8 12		
		A stratified sample size of 120 is to be drawn from this population. Considering the cost of survey from each stratum as the same, the sample size from Stratum II by Neyman allocation is 1. 72 2. 60 3. 40 4. 45		

		A1:1 A2:2 A3:3 A4:4		
Ohia	ctive Ques	tion		
	1003584		4.0	1.00
104	1003384	In survey sampling, let Y be the characteristic under study and let X be the associated auxiliary characteristic with ρ as the correlation between them. Also let C_X and C_Y be the coefficients of variation of X and Y respectively. Then to the first order of approximation, which of the following statements are correct: A. The regression estimator is always more efficient than the sample mean of SRSWOR for estimating population mean whenever ρ is different from zero.	4.0	1.00
		B. The ratio estimator will be more efficient than sample mean of SRSWOR for estimating population mean whenever $\rho < \frac{1}{2} \frac{c_X}{c_Y}$.		
		C. The regression estimator is always more efficient than ratio estimator unless the relationship between Y and X is linear passing through the origin in which case the two estimators are equally efficient.		
		D. The product estimator used when ρ is negative is more efficient than sample mean for estimating population mean if $\rho<-\frac{1}{2}\frac{c_X}{c_Y}$.		
		Choose the correct statements from the options given below:		
		1. A, B and C only. 2. A, B and D only. 3. A, C and D only		
		4. B, C and D only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ctive Ques	tion		
	1003585		4.0	1.00

Which of the following statements are correct:

A. If clusters are formed at random, cluster sampling is as efficient as SRSWOR.

B. The efficiency of cluster sampling decreases rapidly with the decrease in the size of the clusters.

C. For cluster sampling to be efficient, the clusters should be so formed that the variation between cluster means is as small as possible while the variation within clusters is as large as possible.

D. Cluster sampling may be preferred in situations when no reliable list of the elements of the population are available or it may be prohibitively expensive to construct such a list or economic considerations may point to choice of clusters as units rather than individual elements and hence in cluster sampling it can be stated that cost is balanced against precision.

Choose the correct statements from the options given below:

1. A, B and C only.

2. A, B and D only.

3. A, C and D only.

4. B, C and D only.

A1:1

A2:2

A3:3

A4:4

Objective Question 106 1003586 4.0 1.00 Suppose that N units in the population are numbered 1 to N in some order. In case of systematic sampling with sample of size n, selecting using 'every kth rule', consider the following statements: A. It amounts to stratifying the population into n strata consisting of first k units, the second k units and so on with the units occurring as the same relative position in the stratum rather than randomly within stratum. B. Since N is not in general an integral multiple of k, different systematic samples from the same finite population may vary by one unit in size. C. It amounts to selecting a single cluster of size n from a population of k clusters. D. Such a sampling is preferable when a periodic effect is suspected but not well known. Choose the correct answer from the options given below: 1. A, B and C only. 2. A, B and D only. 3. A, C and D only. 4. B, C and D only. A1:1 A2:2 A3:3 A4:4 Objective Question 107 1003587 4.0 1.00

167_B2_Live_AgriculturalStatistics_1-120.html 7/10/23, 6:47 AM Consider a population with NM elements grouped into N first stage units (fsu's), each containing M second stage units (ssu's). Now assume that a sample of size 'nm' has been drawn by first selecting n fsu's and then drawing 'm' ssu's from each of the selected fsu's. Which of the following statements about such a subsampling are correct: A. The procedure of first selecting clusters called fsu's and then choosing a specified number of elements or groups of elements called ssu's within the selected clusters is also called two-phase sampling. B. The subsampling becomes cluster sampling if m=M. C. The subsampling becomes stratified sampling having n=N with N fsu's as strata and m units drawn from each stratum. D. The subsampling becomes simple random sampling if M=1 and m=1. Choose the correct statements from the options given below: 1. A, B and C only. 2. A, B and D only. 3. A, C and D only. 4. B, C and D only. A1:1 A2:2 A3:3 A4:4 Objective Question 108 1003588 4.0 1.00 Identify the correct statement: 1. Sampling errors are present in both census and sample surveys. 2. Non-sampling errors can occur in any survey, whether complete enumeration or sampling. 3. Snowball sampling can be considered as a type of probability sampling. 4. The results obtained in a census study are always more accurate than those obtained through a sample survey. A1:1 A2:2

		A3:3		
		A4:4		
Ob	jective Que	stion		
109	1003589		4.0	1.00

In sampling theory, for linear trended population, considering sample size as n and variances of mean estimators under stratified, systematic and simple random sampling (SRS) as V_{st} , V_{sy} and V_{SRS} respectively, which of the following statements is appropriate:

- 1. Systematic sampling is much more efficient than SRS but less effective than stratified random sampling as V_{st} : V_{SRS} are in the ratio 1: (1/n): n
- 2. Stratified random sampling is much more efficient than SRS but less effective than systematic sampling as V_{st} : V_{SRS} are in the ratio (1/n): 1: n
- 3. SRS is less efficient than stratified sampling while systematic sampling is equally efficient as stratified sampling for such a linear trend with V_{st} : V_{sy} : V_{SRS} in the ratio

(1/n): (1/n): n

4. SRS is less efficient than stratified sampling while systematic sampling is equally efficient as stratified sampling for such a linear trend with V_{st} : V_{sy} : V_{SRS} in the ratio 1:1: n

A1:1

A2:2

A3:3

A4:4

111 1003591

				_	_
Objectiv	ve Ques	tion			
110 100	03590		4.0	1.00)
		Consider the following statements in the context of agricultural/ fisheries statistics system in India:			
		 Official number of 'permanently settled states' of India, where there is no land revenue agency at the village level, in which crop area and land use statistics are collected through a scheme of sample surveys 			
		2. As per year 2021-22 all-India estimates (in lakh tonnes), number of times inland fish production is approximately more than marine fish production			
		3. Official number of broad classifications of land use in India for the purpose of statistics collection			
		The numbers referred to in above statements (1), (2) and (3) are respectively			
		1. 4, 3, 13			
		2. 3, 4, 9			
		3. 3, 3, 9			
		4. 4, 4, 10			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Objectiv	ve Oues	tion			

4.0 1.00

A population is sampled over two occasions for making current estimates of a character. On the first occasion a simple random sample of n units is taken. A random subsample of m=nλ units is retained (matched) for use on a second occasion, on which another independent random sample of u=n-m = nµ units is selected (unmatched with the first occasion). Denote by y and x the measurements on the second and first occasions respectively with p as their correlation. Ignoring finite population corrections, the variate is assumed to have same variance σ^2 on each occasion. Then if \hat{M}_i (i=1, 2) are the estimators for estimating the population mean Mi on first and second occasions respectively, consider the following table:

Second occasion	Estimate	Variance	Weights
First occasion	\widehat{M}_1	$V(\widehat{M}_1) = \frac{\sigma^2}{n}$	
Unmatched part (based on u)	\widehat{M}_{2u}	$V(\widehat{M}_{2u})$	$W_{2u} = \frac{1}{V(\widehat{M}_{2u})}$
Matched part (based on m)	\widehat{M}_{2m}	$V(\widehat{M}_{2m})$	$W_{2m} = \frac{1}{V(\widehat{M}_{2m})}$

Then if given $\widehat{M}_2 = \frac{W_{2M}\widehat{M}_{2M} + W_{2m}\widehat{M}_{2m}}{W_{2M} + W_{2m}}$ and its minimum variance as $V_{min}(\widehat{M}_2) = \frac{\sigma^2}{n}\left(\frac{1}{2} + \sqrt{\frac{1-\rho}{2}}\right)$, the 'expression for $V(\widehat{M}_2)$

'and the 'condition for $V(\widehat{M}_2)$ to be less than $V(\widehat{M}_1)$ ' are respectively given by

Then if given $\widehat{M}_2 = \frac{W_{3M}\widehat{M}_{3M} + W_{3m}\widehat{M}_{2m}}{W_{3M} + W_{3m}}$ and its minimum variance as $V_{min}(\widehat{M}_2) = \frac{\sigma^2}{n}\left(\frac{1}{2} + \sqrt{\frac{1-\rho}{2}}\right)$, the 'expression for $V(\widehat{M}_2)$ 'and the 'condition for $V(\widehat{M}_2)$ to be less than $V(\widehat{M}_1)$ ' are respectively given by

1.
$$V(\widehat{M}_2) = \frac{V(W_2u) + V(W_2m)}{W_2u + W_2m}$$
 and $\rho < (1/2)$
2. $V(\widehat{M}_2) = \frac{1}{W_2u + W_2m}$ and $\rho < (1/2)$

2.
$$V(\widehat{M}_2) = \frac{1}{W_{11} + W_{12}}$$
 and $\rho < (1/2)$

3.
$$V(\widehat{M}_2) = \frac{1}{W_2 u + W_2 m}$$
 and $\rho > (1/2)$

3.
$$V(\widehat{M}_2) = \frac{1}{W_2 u + W_2 m}$$
 and $\rho > (1/2)$
4. $V(\widehat{M}_2) = \frac{V(W_2 u) + V(W_2 m)}{W_2 u + W_2 m}$ and $\rho > (1/2)$

A1:1

A2:2

A3:3

A4:4

Objective Question

112 1003592 4.0 1.00 Consider three genotypes AA, Aa and aa under random mating. Let the genotypic frequencies be correspondingly (0.25, 0.10, 0.65). Then, assuming that parental gene frequencies in both sexes are same, the genotypic frequencies of the next generation are accordingly 1. (0.30, 0.00, 0.70) 2. (0.09, 0.42, 0.49) 3. (0.09, 0.10, 0.81) 4. (0.49, 0.09, 0.42) A1:1 A2:2A3:3

		A4:4		
0	bjective Que	stion		
	3 1003593		4 0	1.00
11	3 1003373	Consider a population in which initial gene frequencies differ in the two sexes. Under random mating, the Hardy-Weinberg equilibrium will	7.0	1.00
		be attained in two generations be attained in the next generation		
		3. never be attained		
		4. be attained only in the presence of mutation		
		4. be attained only in the presence of indiation		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	bjective Que	stion		
11	4 1003594		4.0	1.00
		The product-moment correlation coefficient between grandparent and grand-child in a random mating population while considering a set up while deducing correlation between relatives, whose parents are uncorrelated, is		
		1. 1/4		
		2. 1/2		
		3. 3/4		
		4. 1/8		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	bjective Que	stion		
11	5 1003595		4.0	1.00

Consider the following statements pertaining to crossbreeding and heterosis: A. Heterosis is the extent to which the performance of a crossbred in one or more traits is better than the average performance of the two parents. B. Crossbreeding are mating between animals of different breeds (or lines) from the same species usually done to produce offsprings with superior traits. C. Heterosis is based on the phenomenon of dominance when the alleles of a locus are non-additive.t D. Heterosis is higher for characteristics of animals with a high heritability and lower for traits with a low heritability. Choose the correct statements from the options given below: 1. A, B and C only. 2. A, B and D only. 3. A, B, C and D. 4. B, C and D only. A1:1 A2:2 A3:3 A4:4 Objective Question 116 1003596 4.0 1.00 The ratio of additive genetic variance to phenotypic variance is termed as 1. Heritability in the broad sense 2. Heritability in the narrow sense 3. Repeatability 4. Genetic correlation A1:1 A2:2A3:3 A4:4 Objective Question 117 1003597 4.0 1.00 While analysing genetic components of variance, if the additive genetic variance and the genotypic variance arising from a single locus came out to be 6.2208 and 7.1424 respectively, then the dominance variance is 1.6.6816 2. 1.0745 3. 5.5539 4. 0.9216 A1:1

A1:1

A2:2

A3:3

		A2:2		
		A3:3		
		A4:4		
Obje	ctive Ques	tion	'	
118	1003598		4.0	1.00
		The method in which the selection is made for one trait at a time in successive generations for improving several characters is called		
		1. Independent culling levels in multiple trait selection method		
		2. Selection index method		
		3. Phenotypic index method		
		4. Tandem selection method		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Ques	tion		
119	1003599		4.0	1.00
		Data on reproductive output Y (i.e. number of eggs per female) on nine observations for each of the two groups (normal and previously stunted) of tilapia fish were available along with their corresponding mean weights (X). The objective was to determine whether stunting has any effect on reproductive output as compared to the normal group. It was observed that weight of females had an impact on reproductive output. A one way classification ANCOVA on Y taking X as a covariate was performed. Which of the following statements are correct:		
		A. On the two groups of egg outputs, if suppose the usual t test for difference of two means		
		showed that there was no significant difference in egg output between normal and stunted tilapia then ANCOVA results will also show that the groups are not significantly different with respect to egg outputs.		
		B. The error degrees of freedom in the ANCOVA under consideration will be 16		
		C. On the two groups of egg outputs, if suppose the usual t test for difference of two means		
		showed that there was no significant difference in egg output between normal and stunted tilapia then, it can happen that, ANCOVA results may show that the groups are significantly different with respect to egg outputs.		
		D. The error degrees of freedom in the ANCOVA under consideration will be 15		
		Choose the correct statements from the options given below:		
		1. A and B only.		
		2. A and D only.		
		3. B and C only.		
		4. C and D only.		

	A4:4		
Objective Que	estion		
120 1003600		4.0	1.00