PREVIEW QUESTION BANK

Module Name : Agricultural Statistics - 68-ENG Exam Date : 29-Jun-2024 Batch : 14:30-16:30

Dispective Question		4.0	larks
Movement of DNA from one bacterium to another through a tubular bridg 1. Conjugation 2. Transposition 3. Transfection 4. Transduction A1:1 A2:2 A3:3 A4:4 Which of the following is responsible for eliminating toxic oxygen by-prod 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1:1 A2:2 A3:3 A4:4 A2:2 A3:3 A4:4		4.0	
2. Transposition 3. Transfection 4. Transduction A1:1 A2:2 A3:3 A4:4 Which of the following is responsible for eliminating toxic oxygen by-prod 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1:1 A2:2 A3:3 A4:4 A1:1 A2:2 A3:3 A4:4	or pilus:	4.0	1.
3. Transfection 4. Transduction A1:1 A2:2 A3:3 A4:4 Which of the following is responsible for eliminating toxic oxygen by-prod 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1:1 A2:2 A3:3 A4:4 Pective Question A form of multiple parasitism in which a parasite preferentially attacks a h			
4. Transduction A1:1 A2:2 A3:3 A4:4 Which of the following is responsible for eliminating toxic oxygen by-prod 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1:1 A2:2 A3:3 A4:4 A4:4 A5:2 A7:3 A7:4 A7:4 A7:4 A7:4 A7:4 A8:4 A8:4			
A1:1 A2:2 A3:3 A4:4 Which of the following is responsible for eliminating toxic oxygen by-prod 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1:1 A2:2 A3:3 A4:4 A4:4 Aform of multiple parasitism in which a parasite preferentially attacks a h			
A2 : 2 A3 : 3 A4 : 4 Which of the following is responsible for eliminating toxic oxygen by-prod 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1 : 1 A2 : 2 A3 : 3 A4 : 4 Pective Question 203 A form of multiple parasitism in which a parasite preferentially attacks a h			
A3 : 3 A4 : 4 Which of the following is responsible for eliminating toxic oxygen by-prod 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1 : 1 A2 : 2 A3 : 3 A4 : 4			
A4 : 4 Which of the following is responsible for eliminating toxic oxygen by-prod 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1 : 1 A2 : 2 A3 : 3 A4 : 4 Exertive Question 203 A form of multiple parasitism in which a parasite preferentially attacks a h			
ective Question Which of the following is responsible for eliminating toxic oxygen by-prod 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1: 1 A2: 2 A3: 3 A4: 4 ective Question A form of multiple parasitism in which a parasite preferentially attacks a h			
Which of the following is responsible for eliminating toxic oxygen by-production 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1:1 A2:2 A3:3 A4:4 sective Question A form of multiple parasitism in which a parasite preferentially attacks a home of the production and the production are setting to the production and the production are setting to the production and the production are setting to the prod			
Which of the following is responsible for eliminating toxic oxygen by-prod 1. Mitochondria 2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1:1 A2:2 A3:3 A4:4 Rective Question A form of multiple parasitism in which a parasite preferentially attacks a h			
2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1:1 A2:2 A3:3 A4:4 Sective Question A form of multiple parasitism in which a parasite preferentially attacks a h	cts from cells?	4.0	1
2. Golgi complex 3. Peroxisomes 4. Chloroplasts A1:1 A2:2 A3:3 A4:4 Pective Question 203 A form of multiple parasitism in which a parasite preferentially attacks a h			
3. Peroxisomes 4. Chloroplasts A1:1 A2:2 A3:3 A4:4 Exertive Question 203 A form of multiple parasitism in which a parasite preferentially attacks a h			
4. Chloroplasts A1:1 A2:2 A3:3 A4:4 Pective Question 203 A form of multiple parasitism in which a parasite preferentially attacks a h			
A1:1 A2:2 A3:3 A4:4 Sective Question 203 A form of multiple parasitism in which a parasite preferentially attacks a h			
A2:2 A3:3 A4:4 Sective Question 203 A form of multiple parasitism in which a parasite preferentially attacks a h			
A3:3 A4:4 ective Question 203 A form of multiple parasitism in which a parasite preferentially attacks a h			
A4 : 4 203			
ective Question 203			
A form of multiple parasitism in which a parasite preferentially attacks a h			
A form of multiple parasitism in which a parasite preferentially attacks a h			
	World 1986 FG 962 (1985) Side 10 86 FG	4.0	1
known as	st that is already parasitized by another species is		
1 Clantonaracitism			
Cleptoparasitism Ectoparasitoid			
3. Obligate parasitism			
Superparasitism Superparasitism			
4. Superparasiusin			
A1 · 1			
A1:1			

		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	on		
4	204		4.0	1.00
		For mass multiplication of DD-136 nematode, the common host used is		
		1. Silk moth		
		2. Fruit sucking moth		
		Codling moth		
		4. Lesser wax moth		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	on		
5	205		4.0	1.00
		Chlorpyriphos methyl is effective against stored product insects except		
		1. Rhizopertha dominica		
		2. Tribolium castaneum		
		3. Caryedon serratus		
		4. Oryzaephilus surinamensis		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Quest	on		
6	206		4.0	1.00
		Which of the following insects often cause inhalational allergies in human following large emergence of adult insects		
		1. Stick insects		
		May flies Ear wigs		
		Preying mantis		
		A1:1		
		231 . 1		
		A2:2		

		A3:3 A4:4		
		A4.4		
Obje	ctive Questi	on]	
	207		4.0	1.00
		Given below are two statements:		
		Statement (I): Climate is a weather condition related to smaller areas at a given place and at a given time		
		Statement (I): Climate is a weather condition related to smaller areas at a given place and at a given time,		
		Statement (II): Weather is a condition of atmosphere at a given place and at a given time		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		Both Statement (I) and Statement (II) are correct.		
		2. Both Statement (I) and Statement (II) are incorrect.		
		3. Statement (I) is correct but Statement (II) is incorrect.		
		4. Statement (I) is incorrect but Statement (II) is correct.		
		A1:1		
		Al.1		
		A2:2		
		A3:3		
		A4:4		
	ctive Questi	on		
8	208		4.0	1.00
		The local name of cyclone in Phillippines is		
		1. Hurricane		
		2. Cyclone		
		3. Baquio		
		4. Typhoon		
		A1:1		
		A2:2		
		A3:3		
		AJ.J		
		A4:4		
Obje	ctive Questi	on		
	209		4.0	1.00
			11	11

1					
			Which one of the following are secondary tillage implements?		
			(A).Subsoiler		
			(B).Cultivator		
			(C).Disc harrow		
			(D).Wetland plough		
			Choose the <i>correct</i> answer from the options given below:		
			1. (A), (B) and (D) only.		
			2. (B) and (C) only. 3. (B), (C) and (D).		
			4. (B) and (D) only.		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
	Obje	ctive Questi	on	<u> </u>	
	10	210	is the most suitable, drought resistant and persistant grass?	4.0	1.00
			Atylosia sp. Cenchrus ciliaris		
			3. Stylosanthes hamata		
			4. Sorghum bicolor		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
-1		ctive Questi 211	on	4.0	1.00
	11	211	The rainfed area in India is aproximately	1.0	1.00
			1. 30 mha 2. 40 mha		
			3. 57 mha		
			4. 70 mha		
			A1:1		
			A2:2		

		A3:3		
		A4:4		
	ective Quest			
12	212	Which nutrient is often a limiting factor in agricultural production?	4.0	1.00
		1. Nitrogen		
		Carbon Oxygen		
		4. Hydrogen		
		4. Hydrogen		
		A1:1		
		A2:2		
		A3:3		
		A3:3		
		A4:4		
		AT.T		
Obio	ective Quest	ion		
	213		4.0	1.00
		What is a potential disadvantage of agroforestry systems?		
		Increased soil erosion		
		Decreased carbon sequestration Reduced biodiversity		
		Reduced blodiversity Enhanced susceptibility to pests		
		4. Enhanced susceptibility to pesis		
		A1:1		
		AI:I		
		A2:2		
		AZ . Z		
		A3:3		
		10.0		
		A4:4		
Obje	ective Questi	ion		
14	214		4.0	1.00
		Pungency in mustard oil is due to		
		1. Amino acid		
		Allyl isothiocyanate		
		3. Erusic acid		
		4. Oxalic acid		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
01:				
	215	on	4 0	1.00
	213	Sesamum belongs to the family	7.0	1.00
		1. Chenopodiaceae		
		2. Papilionaceae		
		3. Leguminosae		
		4. Pedaliaceae		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Quest	on		
16	216		4.0	1.00
		Dark period is critical in which type of plant?		
		1. Short day plant		
		Long day plant Day neutral plant		
		4. All the options		
		A1:1		
		Al: I		
		A2:2		
		A3:3		
		A4:4		
01:	· 0 ·			
	217	on	4.0	1.00
'		Which of the following is NOT a significant contributor to greenhouse gas emissions from livestock farming?		
		1. Carbon dioxide		
		Methane		
		3. Nitrous oxide		
		4. Ammonia		
		A1:1		
		$A2 \cdot 2$		
		$A3 \cdot 3$		
		A1:1 A2:2 A3:3		

		A4:4		
Obje	ective Quest	ion	'	
	218	Fe deficiency is mostly seen in crops growing on 1. Calcareous or alkaline soils 2. Salt affected soils 3. Acidic soils 4. Neutral soils A1:1 A2:2 A3:3	4.0	1.00
		A4:4		
Obje	ective Quest	ion .		
	219		4.0	1.00
		EDV (Essentially Derived Varieties) are those which are derived from:		
		LDV (Essentially Derived Varieties) are those which are derived from:		
		crossing two commercially known varieties		
		2. hybrid introduced from other countries		
		existing variety through genetic engineering or mutation		
		crossing commercially known variety with its wild relative		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohie	ective Quest	ion		
	220		4.0	1.00
		What is the role of "companion planting" in agriculture?		
		Enhancing soil fertility through crop rotation		
		Growing different crop species together to deter pests		
		Cultivating plants in hydroponic system		
		4. Increasing soil compaction through cover cropping		
		A1:1		
		A2:2		
		A3:3		

		A4:4		
Ohi	ective Quest	ion		
21	2901	If the correlation coefficient between body weight of full sibs is 0.25, then the heritability of this trait in this population is	4.0	1.00
		1. less than 0.25		
		2. 0.35		
		3. 0.50		
		4. 0.75		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
01.	· 0	·		
Оbј.	2902	IUI	4 0	1.00
	2,02	At what allelic frequency is the heterozygous genotype (Aa) twice as frequent as the homozygous genotype (aa) in a Hardy-Weinberg population?	7.0	1.00
		1. p = 0.2; q = 0.8		
		2. p = 0.3; q = 0.7		
		3. p = 0.4; q = 0.6		
		4. p = 0.5; q = 0.5		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	ion		
	2903		4.0	1.00
		If $X \sim N(0,1)$ and $Y = X^2$, then the correlation between X and Y is		
		11		
		2. 0		
		3. 0.5		
		4. 1		
		A1:1		
		A2:2		
		A3:3		
		A4 · 4		

	ective Quest	ion		-
24	2904	If an individual of genotype AaBbCcDd is testcrossed, how many different phenotypes can appear in the progeny?	4.0	1.00
		1.16		
		1. 16		
		2. 32		
		3. 64		
		4. 256		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Quest	ion		
25	2905		4.0	1.00
		If in the analysis of variance of a completely randomized design, the d.f. for the treatment sum of squares is 4 and the mean		
		sum of squares due to error is 2, while the observed F-value for testing significance of treatment differences is 12.5, then which one of the following represents correctly the treatment sum of squares?		
		1. 25		
		2. 50		
		3. 75		
		4. 100		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
01:				
Оbје 26	ective Quest 2906	100	4 0	1.00
20	2900	If two Latin squares each of the same order are such that when one is superimposed over the other, each symbol of one falls on each symbol of the other once and only once, then the two Latin squares are said to be	4.0	1.00
		1. Conjugate		
		2. Self-conjugate		
		3. Orthogonal		
		4. Reduced		
		A1:1		
		A2:2		
		A3:3		

		A4:4						
Ohie	ective Quest	ion						
	2907	The following is a BIBD with parameter	eters $v = 4, b = 4, k = 3, n$	$r=3, \lambda=2$			4.0	1.00
		Block 1	1	3	4			
		Block 2	2	3	4			
		Block 3	1	2	4			
		Block 4						
		Block 4 contains 1. 1 4 2 2. 2 4 3 3. 2 3 1 4. 4 1 3						
		A1:1						
		A2:2						
		A3:3						
		A4:4						
Ohie	ective Quest	ion						
	2908	A coin is tossed until a head appear	s. What is the expectation	n of the nu	mber of tosse	es required?	4.0	1.00
		1. 0.5						
		2. 1 3. 2						
		4. 4						
		A1:1						
		A2:2						
		A3:3						
		A4:4						
Obie	ective Quest	ion						
	2909						4.0	1.00

		Of the 36 accounts drawn randomly from a very large number of accounts in a certain bank, 12 had a deposit of less than Rs. 1500. The estimated standard error for the estimate of the proportion of accounts having a deposit of less than Rs. 1500 is		
		1. 2/105 2. 2/315		
		$3. \frac{1}{3} \sqrt{\frac{2}{35}}$		
		$4. \frac{1}{9\sqrt{2}}$		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Quest	ion		
30	2910	Two samples of size n are selected, one according to SRSWR and the other according to SRSWOR. Under SRSWR, V_1 stands for variance of sample mean based on all units while V_2 stands for the variance of sample mean based on distinct units. V_3 stands for the variance of sample mean based on SRSWOR. Which one of the following holds? 1. $V_1 \ge V_2 \ge V_3$ 2. $V_2 \ge V_1 \ge V_3$ 3. $V_3 \ge V_2 \ge V_1$ 4. $V_3 \ge V_1 \ge V_2$	4.0	1.00
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	ion		
31	2911	A simple random sample of 4 households was drawn from a village containing 120 households. The number of persons per household in the sample were 6, 4, 7 and 3. The estimate of the total number of people in the village is 1. 20 2. 80 3. 600 4. 2400	4.0	1.00
		A1:1		
		A2:2		
		A3:3		

		A4:4		
	ective Quest	ion		
32	2912	If the events A_1,A_2,\ldots,A_n are independent and $P(A_i)=\frac{1}{1+i}$ for $1\leq i\leq n$, then the probability that none of these n events	4.0	1.00
		occurs is		
		1. 1/(n+1)		
		$2 \cdot \frac{1}{(n+1)!}$		
		3. n/(n+1)		
		$4. \ 1 - \frac{1}{(n+1)!}$		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obi				
	ective Quest 2913		4.0	1.00
	2713		1.0	1.00
		A committee of 4 people is to be appointed from 3 officers of the production department, 4 officers of the purchase		
		department, 2 officers of the sales department and 1 chartered accountant. The probability that the chartered accountant		
		must be in the committee is:		
		44.070		
		1. 8/70		
		2. 1/14		
		3. 13/14		
		4. 2/5		
		A1:1		
		A2:2		
		A2 . 2		
		A3:3		
		A4:4		
Obio	ective Quest	ion		
	2914		4.0	1.00
		In an experiment, the experimenter observes proportion of individuals affected by a disease in each of the plots by examining		
		a random sample of individuals within each plot. If p is the observed proportion, then the appropriate variance stabilizing transformation in this case will be		
		Square root transformation		
		Sine inverse transformation		
		Logarithmic transformation		
		Eggantimic transformation 4. Fisher's z-transformation		
		S.C. O. Z. Mariotimanori		
		A1:1		

			A2:2		
			A3:3		
			A4:4		
O	biec	tive Questi	on		
35		2915		4.0	1.00
			The Neyman-Pearson fundamental lemma gives the method of construction of		
			Uniformly most powerful test		
			2. Most powerful test		
			3. Randomized test		
			4. Unbiased test		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
O	hiec	tive Questi	on		
36		2916		4.0	1.00
			Which one of the following non-parametric tests is analogous to Chi-square test of goodness of fit?		
			1. Median test		
			Kolmogorov-Smirnov test		
			3. Mann-Whitney Test		
			4. Wilcoxon Test		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
O	bjec	tive Questi	on		
		2917		4.0	1.00

		Which of the following statement(s) are correct?		
		(A). Mean and variance are equal for Poisson distribution.		
		(B). Mean is greater than variance for binomial distribution.		
		(C). Mean is less than variance for Chi-square distribution.		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A) and (B) only.		
		2. (B) and (C) only.		
		3. (A) and (C) only.		
		4. (A), (B) and (C) .		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4:4		
Obje	ective Quest	ion		
38	2918	In a Chi-square test, the contingency table has 5 rows and 5 columns. What is the number of degrees of freedom?	4.0	1.00
		1. 10		
		2. 12		
		3. 16		
		4. 25		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Quest	ion		
39	2919		4.0	1.00

		Match List-I with List-II			
		List-I	List-II		
		(A). Internal level	(I). Represents the overall logical structure of the entire database.		
		(B). Conceptual level	(II). Defines individual user views or schemas		
		(C). External level	(III). Hides the physical details of the database from users		
		(D). Data abstraction	(IV). Describes how data is physically stored in the database.		
		Choose the correct ans	swer from the options given below:		
		2. (A) - (IV), (B) - (II), (C) - (A) - (IV), (B) - (IV), (C) - (B) - (IV), (C) - (B) - (IV), (C) - (C)	- (II), (D) - (III) - (IV), (D) - (III)		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Questi	on			
40	2920			4.0	1.00
		Which of the following is	s NOT a bioinformatics database?		
		1. GenBank			
		2. UniProt			
		3. Sequin			
		4. PDB (Protein Data Ba	ank)		
		A1:1			
		A1:1 A2:2			
		A2:2			
Obje	ective Questi	A2:2 A3:3 A4:4			
	ective Questi 2921	A2:2 A3:3 A4:4		4.0	1.00
		A2:2 A3:3 A4:4		4.0	1.00
		A2:2 A3:3 A4:4		4.0	1.00
		A2:2 A3:3 A4:4		4.0	1.00

		The term "phylogenetic tree" is used in:		
		1. Genome assembly		
		Evolutionary biology		
		Protein structure prediction		
		Statistical genomics		
		4. Statistical genomics		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Questi	on		
42	2922		4.0	1.00
		What is a common application of bioinformatics in personalized medicine?		
		Genome-wide association studies		
		Protein crystallization		
		3. Virus isolation		
		4. mRNA isolation		
		T. HIN W NOOMAN		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Questi	on		
43	2923	The control degree of males were his legal atotal that:	4.0	1.00
		The central dogma of molecular biology states that:		
		1. DNA is transcribed into RNA, which is translated into proteins		
		2. Proteins are transcribed into RNA, which is reverse-translated into DNA		
		3. DNA directly produces proteins in a cell		
		4. Only RNA is involved in gene expression		
		41.1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ective Questi	on.		
	2924		4.0	1.00
			,	

		In bioinformatics, the term "homology" refers to:		
		Two proteins with different functions		
		Similarity in DNA sequences due to convergent evolution		
		Evolutionarily related genes or proteins		
		Unrelated genetic sequences		
		A1.1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Quest	on		
45	2925	Which of the following is an example of a bioinformatics algorithm used for sequence alignment?	4.0	1.00
		which of the following is an example of a bioinformatics algorithm used for sequence alignment?		
		Smith-Waterman algorithm		
		PCR amplification		
		3. Southern blotting		
		Protein purification		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Questi	on .		
	2926		4.0	1.00
		Computational biology involves the use of:		
		Microscopes for protein visualization		
		Computer algorithms to analyze biological data		
		Molecular cloning techniques		
		4. Gel electrophoresis for DNA separation		
		A1:1		
		A2:2		
		A3:3		
		AJ.J		
		A4.4		
		A4:4		
C1 :				
	2927	on	4.0	1.00
'			4.0	1.00

			Which one of the following is an example of primary database?		
			4 8500		
			1. KEGG		
			2. EMBL 3. RefSeq		
			4. CATH		
			4. CAITI		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
L	01:	· · · · · ·			
15		ctive Questi 2928	on	4.0	1.00
	10	2,720	Given below are two statements regarding substitution matrices:	1.0	1.00
			Statement (I): The PAM substitution matrices were derived using local multiple alignments.		
			Statement (II): The BLOSUM matrices were derived using substitution frequencies derived from sets of closely related		
			protein sequences.		
			In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
			Both Statement (I) and Statement (II) are correct.		
			Both Statement (I) and Statement (II) are incorrect.		
			3. Statement (I) is correct but Statement (II) is incorrect.		
			4. Statement (I) is incorrect but Statement (II) is correct.		
			A1:1		
			11.1		
			A2:2		
			AZ:Z		
			A3:3		
			A4:4		
•	_	ctive Questi	on		
4	49	2929	Consider the following terminologies used in phylogenetic analysis:	4.0	1.00
			Consider the following terminologies used in phylogenetic analysis.		
			(A). The lines in a tree are called branches or edges.		
			(B). Internal branch is located between two nodes.		
			(C). Root is the common ancestor of all taxa.		
			Choose the <i>correct</i> answer from the options given below:		
			1. Only (A) and (B) are true.		
			2. Only (A) and (C) are true.		
			3. Only (B) and (C) are true.		
			4. All (A), (B) and (C) are true.		

		A1:1		
		A2:2		
		A3:3		
		A4:4		
L				
Ob. 50	jective Quest 2930	ion	4.0	1.00
	2930	The number of possible unrooted trees for 5 operational taxonomic units is	4.0	1.00
		1. 3		
		2. 15		
		3. 105		
		4. 954		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	jective Quest	ion		
51	2931	Given below are two statements regarding protein structure prediction methods:	4.0	1.00
		Statement (I): Ab initio method predicts protein structures based on sequence homology with known structures.		
		Statement (II): Homology modeling, also known as comparative modeling attempts to produce all-atom protein models based on sequence information alone without the aid of known protein structures.		
		In light of the above statements choose the <i>most appropriate</i> answer from the options given below.		
		Both Statement (I) and Statement (II) are true. Both Statement (I) and Statement (II) are false.		
		3. Statement (I) is true but Statement (II) is false.		
		4. Statement (I) is false but Statement (II) is true.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	:4: 0			
Оb. 52	jective Quest	IOII	4.0	1.00

Match List	t-I	with	List-I
------------	-----	------	--------

List-l	List-II
(A). Procheck	(I). Multiple sequence alignment program
(B). ClustalW	(II). Software to check the stereochemical quality of a protein structure
(C). Swiss-Model	(III). Molecular visualization software
(D). Cn3D	(IV). Automated, flexible docking program
(E). Affinity	(V). An automated comparative protein modeling server

Choose the correct answer from the options given below:

- 1. (A) (II), (B) (I), (C) (V), (D) (III), (E) (IV)
- 2. (A) (III), (B) (I), (C) (V), (D) (II), (E) (IV)
- 3. (A) (III), (B) (IV), (C) (V), (D) (II), (E) (I)
- 4. (A) (II), (B) (I), (C) (IV), (D) (III), (E) (V)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

53 2933

Consider the following statements regarding various functions used in Perl:

4.0 1.00

- (A). The splice() function is a general purpose function to add or remove array elements.
- (B). The push() function may be used to append a list of items to the beginning of an array.
- (C). The unshift() function prepends a list of items to the end of an array.

Choose the *correct* answer from the options given below:

- 1. Only (A) is true.
- 2. Only (A) and (B) are true.
- 3. Only (A) and (C) are true.
- 4. Only (B) and (C) are true.
- A1:1
- A2:2
- A3:3
- A4:4

	ective Quest			
54	2934	Which of the following is not a supervised learning method?	4.0	1.00
		1. Support vector machine		
		K-means clustering		
		Decision tree		
		4. Linear regression		
		4. Lifted Tegression		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Quest			
55	2935		4.0	1.00
		In Artificial Intelligence, an environment is uncertain if it is		
		Not fully observable and not deterministic		
		Not fully observable or not deterministic		
		Fully observable but not deterministic Net fully observable but deterministic		
		Not fully observable but deterministic		
		A1:1		
		A2:2		
		A3:3		
		A3:3		
		A4:4		
	ective Quest			
56	2936		4.0	1.00
		Choose the one which is not an Ensemble Modeling Technique:		
		1. Bagging		
		2. Boosting		
		3. Blending		
		4. Stacking		
		A1:1		
		A2:2		
		A2.2		
		A3:3		
		A4:4		

	ctive Quest	ion		
57	2937	Software does not wear-out in the traditional sense of the term, but software does tend to deteriorate as it evolves, because: 1. Software suffers from exposure to hostile environments. 2. Defects are more likely to arise after software has been used often. 3. Multiple change requests introduce errors in component interactions. 4. Software spare parts become harder to order	4.0	1.00
		A1:1 A2:2		
		A3:3 A4:4		
Obje	ctive Quest	ion		
58	2938	Which statement is correct about the Multiplexer? 1. Produces multiple output signals 2. Produces single output signal 3. Encodes the input signals 4. Decodes the input signals A1:1 A2:2 A3:3 A4:4	4.0	1.00
Ohie	ctive Quest	ion		
	2939	Which one of the following is a FIFO data structure 1. Stacks 2. Linked List 3. Queues 4. Graphs A1:1 A2:2 A3:3	4.0	1.00
Ohio	ective Quest	A4:4		
l Oole	ouve Quest	ion		

	60	2940	Thomson Reuters was created by the Thomson Corporation's purchase of thecompany, Reuters Group. 1. German 2. Canadian 3. French 4. British	4.0	1.00
			A1:1		
			A2:2		
			A3:3		
			A4:4		
		ctive Questi			
	61	2941		4.0	1.00
			Following is used for storing a single Bit in Computer: 1. Multiplexer 2. Encoder 3. Flip Flop 4. Decoder		
			A1:1 A2:2		
			A3:3 A4:4		
li	Obie	ctive Questi	on		
		2942		4.0	1.00
			Which of the following is not an application software? 1. Windows 10 2. WordPad 3. Photoshop 4. MS-excel		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
		ctive Questi			
	63	2943		4.0	1.00

		The maximum	number of processes that c	an be in ready state for a c	computer system with n CPUs is	1		
		1. n 2. n ²						
		3. 2 ⁿ	of n					
		4. Independent	OI II					
		A1:1						
		A2:2						
		112.12						
		A3:3						
		A3:3						
		A4:4						
Obje	ctive Quest	ion						
64	2944						4.0	1.00
		Consider the pr	rocess given below:					
		Process	Arrival time	Service Time				
		Flocess	Arrival time	Service Time				
		P1	0.000	3				
		P2	1.001	6				
				BSS.				
		P3	4.001	4				
			4.001					
		P4	6.001	2				
		P4	6.001	2				
		What is the wai	iting time of process P3 usi	ng shortest job first (pre-en	nptive)?			
		1. 1						
		2. 3						
		3. 2						
		4. 0						
		A1:1						
		A2:2						
		A3:3						
		A4:4						
		A4.4						
	ctive Quest	ion					1	11
65	2945	Which of the co	ommunication modes suppo	ort two way traffic but only o	one direction at a time?		4.0	1.00
		vvilicii oi tile co	ommunication modes suppo	of two way traine but only c	one direction at a time?			
		1. Simplex						
		2. Half Duplex						
		3. Three-quarte	r's duplex					
		4. Full duplex						
		A1:1						
1		[A1.1					11	

		A2:2 A3:3 A4:4		
	ctive Questi			
66	2946	The loss in signal power as light travels down the fibre is called: 1. Attenuation 2. Propagation 3. Scattering 4. Interruption	4.0	1.00
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Questi 2947		14.0	1.00
	ctive Questi	of a set of <i>n</i> elements is an arrangement of the elements in a given order: 1. Combination 2. Permutation 3. Exponent 4. Logarithm A1:1 A2:2 A3:3 A4:4		
	2948		4.0	1.00

			Which of the following are non linear type of data structure?		
			(A).Tree		
			(B).Graphs		
			(C).Hash tables		
			(D).List		
			Choose the <i>correct</i> answer from the options given below:		
			1. (A), (B) and (C) only.		
			2. (B), (C) and (D) only. 3. (A), (C) and (D).		
			4. All (A), (B), (C) and (D).		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
		ctive Questi	on		
6	59	2949	Which of the follwoing is a type of polymorphism in JAVA Programming?	4.0	1.00
			Multiple Polymorphism		
			Compile Polymorphism Multilevel Polymorphism		
			Execution time polymorphism		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
C		ctive Questi	on		
7	0	2950		4.0	1.00
			Using which of the following keywords can an exception be generated?		
			Using which of the following keywords can an exception be generated? 1. Threw		
			1. Threw 2. Throws		
			1. Threw 2. Throws 3. Throw		
			1. Threw 2. Throws		
			1. Threw 2. Throws 3. Throw 4. Catch		
			1. Threw 2. Throws 3. Throw		
			1. Threw 2. Throws 3. Throw 4. Catch		

			A3:3		
			A4:4		
L	Ohio	ctive Questi	an an		
- 1 =		1003551	on	4.0	1.00
			If A and B throw with one die for a stake of Rs. 44 which is to be won by the player who first throws 2. If A Starts playing		
			first, the expectations of A and B are respectively		
			1. 12 and 32		
			2. 24 and 20		
			3. 28 and 16		
			4. 26 and 18		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
(ctive Questi	on		
	72	1003552		4.0	1.00
			If X and Y are independent Poisson variates with parameters m and n, respectively, then the conditional distribution of		
			X given X+Y is		
			1. Poisson		
			2. Normal		
			3. Binomial		
			4. Cauchy		
			A1:1		
			A2:2		
			····		
			A3:3		
			A4:4		
	Ohie	ctive Questi	on		
15		1003553	vui	4.0	1.00
			Minimum Variance Unbiased estimators through sufficient statistic is obtained using		
			Central Limit theorem		
			Cramer-Rao inequality		
			3. Rao-Blackwell theorem		
			4. Neyman-Pearson lemma		
			A1:1		
			A2:2		
			··-		

		A3:3		
		A4:4		
		A4.4		
Obj	ective Quest	ion		
74	1003554		4.0	1.00
		Probability of accepting Null hypothesis Ho when it is false is termed as		
		Power of a test		
		Type I error Critical region		
		4. Type II error		
		4. Type if entir		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	ion		
75	1003555		4.0	1.00
		Mode of F distribution with V1 (>2) and V2 degrees of freedom is given as		
		mode of Falsandalon mai v F (-2) and v2 degrees of needom is given do		
		1. [V2(V1-2)]/[V1(V2+2)]		
		2. [V1(V2-2)]/[V1(V2+2)]		
		3. [V2(V1-2)]/[V2(V1+2)]		
		4. [V2(V1+2)]/[V1(V2-2)]		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	ion		
76	1003556		4.0	1.00
		If X and Y are two independent standard normal variates, then the distribution of Y/X is		
		1. Weibull		
		2. Gamma		
		Standard Cauchy Standard Normal		
		4. Standard Normal		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
Ohi	active Overt			
77	1003557	1001	4.0	1.00
"	1003337	Given below are two statements:	4.0	1.00
		Statement (I): Likelihood Ratio test is generally an UMP if an UMP test at all exists		
		Statement (II): In a Likelihood Ratio test, probability of type I error is controlled by effectively choosing a suitable cutoff point		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		Both Statement (I) and Statement (II) are correct.		
		Both Statement (I) and Statement (II) are incorrect.		
		Statement (I) is correct but Statement (II) is incorrect.		
		Statement (I) is incorrect but Statement (II) is correct.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	in		
		ion .		
78	1003558		4.0	1.00
78			4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter.	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter.	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14 A1:1 A2:2	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14 A1:1 A2:2 A3:3	4.0	1.00
78		In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14 A1:1 A2:2	4.0	1.00
	1003558	In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14 A1: 1 A2: 2 A3: 3 A4: 4	4.0	1.00
Obj	1003558	In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14 A1: 1 A2: 2 A3: 3 A4: 4		
Obj	1003558	In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14 A1: 1 A2: 2 A3: 3 A4: 4		1.00
Obj	1003558	In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14 A1: 1 A2: 2 A3: 3 A4: 4		
Obj	1003558	In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14 A1: 1 A2: 2 A3: 3 A4: 4		
Obj	1003558	In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14 A1: 1 A2: 2 A3: 3 A4: 4		
Obj	1003558	In 100 set of ten tosses of unbiased coin, in how many cases, seven heads and three tails are expected by the experimenter. 1. 12 2. 17 3. 10 4. 14 A1: 1 A2: 2 A3: 3 A4: 4		

		Given below are two statements:		
		Statement (I): In a negative binomial distribution, mean never exceeds variance		
		Statement (II): Negative binomial distribution is a generalised form of geometric distribution		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		 Both Statement (I) and Statement (II) are correct. Both Statement (I) and Statement (II) are incorrect. Statement (I) is correct but Statement (II) is incorrect. Statement (I) is incorrect but Statement (II) is correct. 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ctive Questi	on		
	1003560		4.0	1.00
	1003500	In case of a normally distributed data sets, which of the following relationship pertaining to QD:MD:SD holds good		1.00
		1. 10:12:15		
		2. 12:10:15		
		3. 15:12:10		
		4. 12:15:10		
		4. 12.13.10		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ctive Questi	on		
_	1003561		4.0	1.00
		Given below are two statements:		
		Statement (I): In a discriminant analysis, dependent variable is parametric and the independent variable is categorical		
		Statement (II): Discriminant analysis minimizes the variance within a class and maximizes it between class		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		Both Statement (I) and Statement (II) are correct.		
		2. Both Statement (I) and Statement (II) are incorrect.		
		Statement (I) is correct but Statement (II) is incorrect. Statement (I) is incorrect but Statement (II) is accorded.		
		4. Statement (I) is incorrect but Statement (II) is correct.		
		A1:1		

		A2:2		
		A3:3		
		A4:4		
Obie	ctive Questi	on .		
82	1003562		4.0	1.00
		Given below are two statements:		
		Statement (I): Principal Component Analysis is a supervised learning method		
		Statement (II): Principal Component Analysis is a dimension reduction method		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
		Both Statement (I) and Statement (II) are correct.		
		2. Both Statement (I) and Statement (II) are incorrect.		
		3. Statement (I) is correct but Statement (II) is incorrect.		
		4. Statement (I) is incorrect but Statement (II) is correct.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ctive Questi	on		
83	1003563		4.0	1.00
		Minimum cost solution to a transportation problem is obtained by		
		North West corner cell method		
		2. Vogel's approximation method		
		3. Stepping stone method		
		Modified distribution method		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Questi			
84	1003564		4.0	1.00

		Identify the incorrect measure of multi collinearity in a regression model		
		1. Kappa Stat > 20		
		2. VIF > 5		
		3. Eigen value near to zero		
		4. Coefficient of determination > 0.7		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohie	ective Quest	on		
85	1003565		4.0	1.00
		If a constant C is deducted from each of the values of both the independent and dependent variables, then the regression		
		coefficient		
		1. Increases by C		
		Decreases by C Remains unchanged		
		Remains unchanged Becomes 1/C of original regression coefficient		
		4. Decomes 170 of original regression coefficient		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	1003566		4.0	1.00
86	1003366	If there are X sources and Y destinations in a transportation problem, the total number of basic variables in a basic feasible	4.0	1.00
		solution is		
		A V.VA		
		1. X+Y-1 2. X-Y		
		3. X+Y		
		4. X		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Quest	on		
HOOJE	ouve Quest	VII		

87	1003567		4.0	1.00
		In a Linear Programming Problem, the restrictions included in the objective function to be optimized is known as		
		1. Constraints		
		Decision variables Objective function		
		4. Finiteness		
		A1:1		
		ALL		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Quest	ion		
88	1003568		4.0	1.00
		In a regression analysis, overall strength of the model is measured by		
		Coefficient of partial correlation Coefficient of determination		
		Coefficient of partial regression		
		4. Eigen value		
		Manual A Communication (Communication Communication Commun		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Quest	ion		
89	1003569		4.0	1.00
		Optimum number of clusters in a cluster analysis is judged based on the following		
		1. Scree plot		
		2. Scatter plot		
		3. Biplot		
		4. Normal probability plot		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Quest	ion		

90	1003570	Which one of the following test is used for testing the homoscedasticity of errors in a regression model	4.0	1.00
		which one of the following test is used for testing the nomoscedasticity of errors in a regression model		
		1. Run test		
		2. White test		
		3. Durbin-Watson test		
		4. Shapiro-Wilk test		
		A1:1		
		Al. I		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Quest	ion		
91	1003571		4.0	1.00
		Identify the best test to be adopted for testing the equality of mean thrips incidence in a set of same samples before and after		
		spray of a treatment		
		1. Independent t-test		
		Analysis of Variance		
		3. Paired t-test		
		4. Chi-square test		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Quest	ion		
	1003572		4.0	1.00
		Indicate the distribution free method used for testing K matched samples based on ordinal level of measurement		
		1. Sign test		
		2. Friedman's test		
		3. McNemar's test		
		4. Cochran Q test		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Quest	on .		
	1003573		4.0	1.00

Non parametric measure of association used in case of categorical level of measurement is 1. Cramer coefficient 2. Kendal rank coefficient 3. Gamma stat 4. Spearman rank coefficient A1:1 A2:2 A3:3 A4:4 Objective Question 94 1003574 4.0 1.00 In drawing a sample of size n from a finite population of size N using Simple Random Sampling With Replacement (SRSWR), the probability that a specified unit is included in the sample is 1. 1/N 2. n/N 3. 1-[1-(1/N)]ⁿ 4. [(N-1)/N]ⁿ A1:1 A2:2 A3:3 A4:4 Objective Question 95 1003575 4.0 1.00 For estimating population mean \bar{y} of a study variable Y using double sampling, information on an auxiliary variable X was collected from a large preliminary sample of size n' units of a population in which X alone was measured to furnish an estimate \bar{x} of population mean of X, as the information about X of the population was not readily available. From this large preliminary sample, a smaller sample of size n was selected and the information on the main variable Y was collected and sample means \bar{y} and using corresponding values of X, the sample mean \bar{x} was computed . In both the phases, SRSWOR was done. The estimates were then used to obtain an estimator $\hat{Y}_d = \frac{\bar{y}}{\bar{x}} \vec{x'}$ of the population mean Y. While deriving the variance of this ratio type mean estimator, the following expressions were considered: $\epsilon_0 = \frac{\bar{y} - \bar{Y}}{\bar{x}}; \; \epsilon_1 = \frac{\bar{x} - \bar{X}}{\bar{X}}; \; \epsilon_2 = \; \frac{\bar{x} - \bar{X}}{\bar{x}}. \; \text{Then, if } \textit{\textbf{S}}_x^2 \; \text{is the population variance of X, E}(\epsilon_1 \, \epsilon_2) \; \text{is}$ 1. $\left(\frac{1}{n'} - \frac{1}{N}\right) \frac{S_x^2}{\overline{X}^2}$ 2. $\left(\frac{1}{n'} - \frac{1}{N}\right) S_x^2$ 3. $\left(\frac{1}{n} - \frac{1}{n'}\right) \frac{S_x^2}{\overline{X}^2}$ 4. $\left(\frac{1}{n} - \frac{1}{n'}\right) S_x^2$

		A1:1			
		A2:2			
		A3:3			
		A4:4			
ш					
Objective Question					

96 1003576

A sample of 100 employees is to be drawn from a population divided into two strata. The strata population sizes N_i , population means (Pop. M_i) and the population mean squares (Pop. M_i) of their monthly wages (in some units) are given below:

Stratum	Ni	Pop. M _i	Pop. MS _i
1	300	25	25
2	200	50	100

Then the sample sizes using proportional and Neyman allocations are given by

	Q	(F			
	Stratum i	Proportional		Neyman	
1.	1		50		43
	2		50		57
	Stratum i	Proportional		Neyman	
2.	1		60		43
	2		40		57
3.	Stratum i	Proportional		Neyman	
	1		43		60
	2		57		40
4.	Stratum i	Proportional		Neyman	
	1		60		57
	2		40		43

4.0 1.00

	A1:1	
	A2:2	
	A3:3	
	A4:4	

Objective Question

97 1003577

Consider the problem of estimating the total number of palm trees on 100 islands in a tropical paradise. The area of each island is known and it is reasonable to think that the number yi of palm trees on each island is approximately proportional to the size of the island. The total size of these 100 islands is 100 square miles. Let the units selected with replacement in 4 independent draws be the islands numbered 1, 29, 36 and 29 with information details as follows:

У	size of island i (in square miles)	island i
14	al p	1
50	5	29
25	2	36
50	5	29

Then the Horwitz Thompson estimate for estimating the total number of trees is

1.
$$\frac{14}{1-(1-0.01)^3} + \frac{100}{1-(1-0.05)^2} + \frac{25}{1-(1-0.02)^2}$$
2.
$$\frac{14}{1-(1-0.01)^3} + \frac{50}{1-(1-0.05)^2} + \frac{25}{1-(1-0.02)^2}$$
3.
$$\frac{14}{1-(1-0.01)^4} + \frac{100}{1-(1-0.05)^4} + \frac{25}{1-(1-0.02)^2}$$
4.
$$\frac{14}{1-(1-0.01)^4} + \frac{50}{1-(1-0.05)^4} + \frac{25}{1-(1-0.02)^2}$$

A1:1

A2:2

A3:3

A4:4

Objective Question
98 | 1003578 |

4.0 1.00

Consider the following statements to estimate the total marine fish landings of our country:

- (A). Even though the sampling design adopted for the purpose is 'stratified multistage random sampling' and stratification being done over space and time, cluster sampling and double sampling are also involved for selecting first stage units.
- (B). A month is divided into 3 groups of 10 consecutive days. Suppose that the 4th date (day) was selected from the group of first 10 days of a month. Then 6 consecutive days from the selected day will be 4, 5, 6, 7, 8, 9 and these days are grouped into 3 clusters of 2 consecutive days, i.e., dates (4 and 5) will form one cluster, while (6 and 7) and (8 and 9) will form the other two clusters. From the 2nd group of 10 days, 6 days are systematically selected with a sampling interval of 10 days from the first date selected from the group of first ten days. Thus 6 days In the 2nd group will be 14, 15, 16, 17, 18 and 19 forming 3 clusters of dates (14 and 15), (16 and 17) and (18 and 19). From the 3rd group. 6 days are selected with the sampling interval of 10 days from the first day selected in the 2nd group, i.e., the dates will be 24, 25, 26, 27, 28 and 29 whose clusters are (24 and 25), (26 and 27), (28 and 29). Thus there are 9 clusters of two days each in a month.
- (C). Each maritime state is divided into several zones on the basis of geographical consideration and fishing practices. Nine landing centres are selected at random from each zone for recording fish landings. Then 9 clusters, formed by a certain procedure involving systematic sampling also within a month, are allotted randomly to the 9 selected landing centres.
- (D). On the first day of observation data are collected from 6 AM to 12 Noon and in the next day, 12 Noon to 6 PM. The data on night landings are collected by enquiry covering the period from 6 PM of the first day to 6 AM of the next day. Thus a 24 hour period is covered for a landing centre. This forms the 'landing centre day' and is the first stage sampling unit.

Choose the *correct* statements from the options given below:

- 1. (A) and (B) only.
- 2. (A) and (D) only.
- 3. (B) and (C) only.
- 4. (C) and (D) only.

A1:1

A2:2

A3:3

A4:4

Objective Question

bjective Quest	ion		
bjective Quest 00 1003580 bjective Quest	A village has 10 orchards numbered 1 to 10 containing 150, 50, 80, 100, 200, 160, 40, 220, 60, 140 trees respectively. It is desired to select a sample of 4 orchards PPS With Replacement to the number of trees in the orchard. By cumulative total method, if the random numbers chosen in the successive draws are 600, 650, 850 and 300, 1. then the orchards selected are 5, 3, 5, 7 2. then the orchards selected are 6, 4, 6, 8 3. then the orchards selected are 7, 5, 7, 9 4. then the orchards selected are 4, 2, 4, 6 A1: 1 A2: 2 A3: 3 A4: 4		1.00
•	ion		
01 1003581	Based on past experience, it is known that standard deviation of weight of one year old rohu fish is 25 g. If it is decided to estimate mean weight within 5 units of true value in either direction with confidence coefficient of 0.95 (note that the standard normal variate Z takes the value 1.96 \(\times 2 \) approximately, at this 95% confidence level), then if the sampling is done with SRSWR and that the finite population correction is ignored, the required sample size is approximately 1. 20 2. 125 3. 50 4. 100 Al : 1 A2 : 2 A3 : 3 A4 : 4		1.00
bjective Quest	ion		
2 1003582		4.0	1.00

Consider the following statements:

- (A). Suppose the N units of a population are numbered 1 to N in some order. Suppose further that N is expressible as a product of two integers n and k such that N = nk. Select a number between 1 to k. Suppose it is i (this i can be any of numbers 1, 2, ..., k). Select the first unit, whose serial number is i. Select every k-th unit thereafter till the required sample size of n is taken. Then the last unit will be i + (k-1) n for i = 1, 2, ..., n
- (B). Suppose the N units of a population are numbered 1 to N in some order. Suppose further that N is expressible as a product of two integers n and k such that N = nk. Select a number between 1 to k. Suppose it is i (this i can be any of numbers 1, 2, ..., k). Select the first unit, whose serial number is i. Select every k-th unit thereafter till the required sample size of n is taken. Thus there are k possible systematic samples. In other words, a systematic sample is a simple random sampling of one cluster unit from a population of k cluster units each of size n.
- (C). Higher heterogeneity within the units of a systematic sample makes the mean estimator more efficient.
- (D). Systematic sampling is more efficient than Simple Random Sampling (SRS) if the variation within the units in the systematic sample is less than the variation within the units of the SRS sample.

Choose the correct answer from the options given below:

- 1. (A) and (B) only.
- 2. (A) and (D) only.
- 3. (B) and (C) only.
- 4. (B) and (D) only.
- A1:1
- A2:2
- A3:3
- A4:4

Obje	ctive Quest	ion		
103	1003583		4.0	1.00

A medical device manufacturer produces vascular grafts. These grafts are produced by extruding polytetrafluoroethylene resin into tubes. Some tubes are produced defective which are called 'flicks'. He suspects that extrusion pressure is a factor for such flicks. He also suspects that there may be significant batch-to-batch variation. He decides to investigate the effect of four different levels of extrusion pressure on flicks using a randomized block design (RBD) considering batches of six resins as blocks. The usual randomization and replication principles of designed experiment are applied. The response variable is the percentage of tubes in the production run that did not contain any flicks which are tabulated as follows:

Extrusion		E	Batch of re	esin (Bloc	k)		Treatment
Pressure	R1	R2	R3	R4	R5	R6	Total
T1	90.3	89.2	98.2	93.9	87.4	97.9	556.9
T2	92.5	89.5	90.6	94.7	87.0	95.8	550.1
Т3	85.5	90.8	89.6	86.2	88.0	93.4	533.5
T4	82.5	89.5	85.6	87.4	78.9	х	423.9+x
Block Total	350.8	359.0	364.0	362.2	341.3	287.1+x	2064.4+x

It can be seen that one of the observation x is missing in the above table. The value of x by employing missing plot technique in RBD set up is

- 1.88.62
- 2.91.27
- 3. 95.70
- 4. 90.25
- A1:1
- A2:2
- A3:3
- A4:4

	ctive Question		
104	1003584	4.0	1.00

A varietal trial on Wheat crop was conducted using a two-associate Partially Balanced Incomplete Block Design (PBIBD). Using standard notations, the parameters of the design are v=b=9; r=k=3; λ_1 = 1; λ_2 = 0; n_1 = 6; n_2 =2 and p^i_{jk} (i, j, k = 1, 2,), where p^i_{jk} is the number of 'symbols' that are j-th associate of α and k-th associate of β , for any two symbols α and β that are i-th associates and is independent of the pairs of i-th associates α and β . In such a two-association scheme, the values of p^i_{jk} written as P^i (i=1, 2) for the following PBIBD with aforesaid parameters are

Blocks	Treatments		
Ï	3	8	4
10	2	7	4
111	1	7	5
IV	7	8	9
V	4	5	6
VI	3	9	5
VII	1	8	6
VIII	2	9	6
IX	1	2	3

1.
$$P^1 = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$$
 and $P^2 = \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}$
2. $P^1 = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}$ and $P^2 = \begin{pmatrix} 6 & 0 \\ 0 & 1 \end{pmatrix}$
3. $P^1 = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}$ and $P^2 = \begin{pmatrix} 6 & 1 \\ 0 & 1 \end{pmatrix}$
4. $P^1 = \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix}$ and $P^2 = \begin{pmatrix} 6 & 1 \\ 1 & 1 \end{pmatrix}$

A1:1

A2:2

A3:3

A4:4

Objective Question

| 105 | 1003585 | | 4.0 | 1.00 | |

An experiment was conducted using Randomized Block Design with 5 treatments and 4 replications and some columns of the ANOVA for the same are given below:

Source	Sum of Squares	Mean Sum of Squares
Blocks	60	20
Treatments	1000	250
Error	216	18
Total	1276	

Let the means of the treatments T1, T2, T3, T4 and T5 to be compared are 65, 28, 25, 18 and 9 respectively. Suppose the F value obtained from ANOVA for Treatment effect is significant. Then the value of critical difference and the treatment groups that are significantly different from each other are [Given the tabulated values of t at 5% for a two tail test: 2.18 and 2.13 at 12 and 15 degrees of freedom respectively]

- 1. 6.15 and four groups viz., [T1, (T2, T3), T4, T5]
- 2. 6.54 and four groups viz., [T1, (T2, T3), T4, T5]
- 3. 6.15 and five groups viz., [T1, T2, T3, T4, T5]
- 4. 6.54 and five groups viz., [T1, T2, T3, T4, T5]

A1:1

A2:2

A3:3

A4:4

Objective Question

106	1003586	4.0	1.00	1
'				

Consider a 2⁴ factorial experiment with two blocks within a replication. The experiment is laid with two replications and partial confounding has been done. If 0 and 1 denote the levels of each factor, the layout of the experiment appears as follows:

Replic	cation I	Replic	ation II
Block 1	Block 2	Block 1	Block 2
0000	0001	0000	0010
0011	0010	0001	0011
0101	0100	0110	0100
0110	0111	0111	0101
1001	1000	1010	1000
1010	1011	1011	1001
1100	1101	1100	1110
1111	1110	1101	1111

The interactions confounded are

- 1. BCD in Replication I and ABCD in Replication II
- 2. ABCD in Replication I and ACD in Replication II
- 3. ABCD in Replication I and ABD in Replication II
- 4. ABCD in Replication I and ABC in Replication II

A1:1

A2:2

A3:3

A4:4

Objective Question

107	1003587	4.0	1.00

In which of the following $(2^5, 2^3)$ factorial experiment design layout (one replicate given), the interactions ABC, ADE and hence BCDE are confounded?

Block I	Block II	Block III	Block IV
00000	10000	00100	00001
11110	01110	11010	11111
10011	00011	10111	10010
10101	00101	10001	10100
01101	11101	01001	01100
01011	11011	01111	01010
00110	10110	00010	00111
11000	01000	11100	11001
Block I	Block II	Block III	Block IV
00000	00100	00001	10000
01111	01011	01110	11111
10101	10001	10100	00101
10110	10010	10111	00110
11010	11110	11011	01010
11001	11101	11000	01001
00011	00111	00010	10011
01100	01000	01101	11100
Block I	Block II	Block III	Block IV
00000	10000	00001	00010
00111	10111	00110	00101
11101	01101	11100	11111
10100	00100	10101	10110
11010	01010	11011	11000
10011	00011	10010	10001
01001	11001	01000	01010
01110	11110	01111	01100
Block I	Block II	Block III	Block IV
00000	10000	00001	01000
11001	01001	11000	10001
00101	10101	00100	01101
01011	11011	01010	00011
11100	01100	11101	10100
10010	00010	10011	11010
01110	11110	01111	00110
10111	00111	10110	11111

		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Quest			
108	1003588		4.0	1.00

Consider a paper manufacturer who is interested in three different pulp preparation methods and four different cooking temperatures for the pulp and who wishes to study the effect of these two factors on the tensile strength of the paper. The experimenter decides to conduct the experiment as follows: A batch of pulp is produced by one of the three methods under study. Then this batch is divided into four samples, and each sample is cooked at one of the four temperatures. Thus he made up a batch of pulp and obtained observations for all four temperatures from that batch. Then a second batch of pulp is made up using another of the three methods and the observations were made as mentioned above. The process is then repeated, until all three replicates of the experiment are obtained. The data are filled in the following Table format with Yijk denoting the observation pertaining to k-th replicate (k = 1, 2, 3) of the j-th level of temperature (j = 1, 2, 3, 4) within the i-th level of Pulp preparation method (i = 1, 2, 3):

		Replicate I			Repl	icate	II	Replicate III			
	Pulp preparation method>	1	2	3	1	2	3	1	2	3	
	200	У111	У211	У311	У112	У212	У312	У113	У213	Уз13	
Temperature (°F)	225	У121	У221	У321	У122	У222	У322	У123	У223	У323	
>	250	Y131	Y231	У331	y 132	У232	У332	y ₁₃₃	У233	У333	
	275	У141	У241	У341	У142	У242	У342	У143	У243	У343	

With the 'Pooled' error found out by combining the (Replication) x (Temperature) and (Replication) x (Pulp preparation method) x (Temperature), some columns of the ANOVA obtained from this designed experiment are given below:

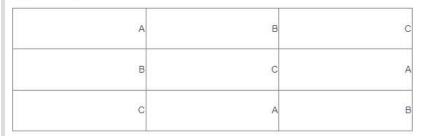
Source	Sum of Squares	Mean Sum of Squares	F value
Replication	78	39	
Pulp preparation method	126	63	C
(Replication) x (Pulp preparation method)	36	9	
Temperature	А	144	С
(Pulp preparation method) x (Temperature)	72	12	Е
'Pooled' Error'	72	В	
	816		

The values of A, B, C, D and E are respectively

- 1. 432, 6, 10.5, 24, 2
- 2. 432, 4, 15.75, 36, 3
- 3. 432, 6, 7, 24, 2
- 4. 432, 4, 7, 36, 3
- A1:1
- A2:2
- A3:3
- A4:4

	tive Questi 1003589	on								1.0	1.00
109	1003589	Consider the following classified	desig	ın:						4.0	1.00
		Course i>	1		2		3				
		Instructors j>	1	2	3	4	5	6			
		Mark scores of Exams, k = 1	-	71					_		
		k = 2 k = 3	-	80 77		_			_		
		Now, consider the following state			31	30	57	10			
			evel of	one		ctor	i.e.	Ins	structor is combined with only one level of another factor i.e. Course		
									eraction term between the factors viz., Course and Instructor		
									in its corresponding ANOVA table is 10 n be further split into three Sources viz., "Instructor (within Course i)		
		effect" (i = 1, 2, 3) Choose the <i>correct</i> answer from	n the (ontic	nne	aive	on h	nelo	NA/-		
		1. (A), (B) and (C) only.	ii uic (optic	1113	give	211 6	7610	VVV.		
		 (A), (B) and (D) only. (A), (C) and (D) only. (B), (C) and (D) only. 									
		A1:1									
		A2:2									
		A3:3									
		A4:4									
	ctive Questi	on									
110	1003590									4.0	1.00

Consider the following Lattice design using


1	2	.3
4	5	6
7	8	9

as the standard array with s=3.

			Blocks
3	2	1	1
6	5	4	П
9	8	7	Ш
7	4	1	IV
8	5	2	V
9	6	3	VI
8	6	1	VII
9	4	2	VIII
7	5	3	IX
9	5	1	×
7	6	2	XI
8	4	3	XII

Consider the following statements:

- (A). As the Lattice design has been constructed by using the complete set of (s-1 = 2) Mutually Orthogonal Latin Squares (MOLS) possible, it is a balanced Lattice.
- (B). The Lattice design constructed is a BIBD with parameters v=9, b=12, r=4, k=3, λ=1
- (C). The blocks X, XI and XII have been constructed by superimposing the following Latin Square arrangement on the standard array:

(D). For the Lattice design, the number of treatments $v = 3^2 = 9$ is a perfect square and its block size is 3, i.e. the square root of this number v.

Choose the *correct* statements from the options given below:

- 1. (A), (B) and (C) only.
- 2. (A), (B) and (D) only.
- 3. (A), (C) and (D) only.
- 4. (B), (C) and (D) only.

		A1:	1							
		A2 :	2							
		A3 :	3							
		A4 :	4							
Obje	ctive Quest	ion								
_	1003591	Contraction (A) representation (C) incomplete (C) i	datich red in the date of the red in the date of the d	a coow of each of the cook of	onsiss of the character plant of the characte	ttected tected and the second	d of the lesign at According to According t	experiment on Tobacco Mosaic Virus (TMV). Each experimental unit was a single leaf on a plant and a number of lesions produced on the leaf by rubbing the leaf with a solution which contained the TMV. was a single plant. The columns were the 'position' from top to bottom, of the four leaves, which were ordingly, the following Youden square design was constructed: Italian Design, the rows form an RBD i.e. Randomized Block Design with v=7 treatments and r=4 Italian Design, the columns form a symmetric BIBD i.e. Balanced Incomplete Block Design with =1. Square Design is an incomplete Latin square and rather every Youden Square Design is an a Design. Italian Design, the 'position' effect is orthogonal to the treatment effect. Italian Design, the options given below:	4.0	1.00
		A3 :	3							
		A4:	4							
	ctive Quest	ion							4.0	1.00
112	1003374								7.0	1.00

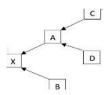
		The base sunflower population has a mean of 100 days to flowering. Two parents were selected that had a mean of 90 days to flowering. The quantitative trait 'days to flowering' has a heritability of 0.2. Then the mean of a population derived from crossing these two parents is 1. 92 2. 96 3. 98 4. 94 A1:1 A2:2 A3:3		
Ļ				<u> </u>
1-	Objective Quest	ion		
1	13 1003593	If a plant with genotype AaBb is self pollinated, where the A and B are not linked, then the probability of getting AABB genotype will be 1. 1/2 2. 1/4 3. 1/8 4. 1/16 A1:1 A2:2 A3:3 A4:4	4.0	1.00
C	Objective Quest	ion		
	14 1003594		4.0	1.00
		A hetero red eyed female was crossed with a red eyed male. The results are: Red eye observed: 120; White eye observed: 80. Red eyes are sex-linked dominant to white. Then, for performing goodness of fit test, the calculated Chi-square value is 1. 24 2. 6 3. 18 4. 21 A1:1 A2:2 A3:3		
		A4:4		

Objective Question

115 1003595

4.0 1.00

Body weight of rabbits is determined by pairs of alleles at two loci that are additive and equal in their effects. Rabbits with genotype aabb have average 1 kg body weight, whereas individuals with genotype AABB have animals that average 3.4 kg in weight. A male rabbit with aabb is crossed with a female of genotype AABB. Then the predicted average weight of F1 progeny of this cross is


- 1.1.70
- 2.2.20
- 3.0.85
- 4. 0.50
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

116 1003596

4.0 1.00

Consider the following path diagram:

In the above diagram, X is the dependent effect and A, B, C, D are the causes such that there is a chain system of cause and effect relationships in which X = A+B and in turn A = C+D. Note here that A and B are independent and so are C and D. Let σ_X^2 be the (total) variance of X and let σ_A^2 be "the variance of X due to the influence of A" and likewise the variances are defined for the three independent causes viz., C and D & also B of the effect X. noting that X = A +B = C + D + B. If path coefficient from an independent cause B to X is $p_{X,B} = (\sigma_B/\sigma_X)$ and the degrees of determination of X by the causes A and B are denoted as $d_{X,A} = \frac{\sigma_A^2}{\sigma_X^2}$ and $d_{X,B} = \frac{\sigma_B^2}{\sigma_X^2}$ respectively such that their sum is one, and likewise the notations are similarly defined, then consider the following statements:

- (A). $d_{X.C} = d_{X.A} d_{A.C}$
- (B). $p_{X.C} = p_{X.A} p_{A.C}$
- (C). $d_{X,C} = d_{X,A} + d_{A,C}$
- (D). $d_{X.A} = d_{X.C} + d_{X.D}$

Choose the correct answer from the options given below:

- 1. (A), (B) and (C) only.
- 2. (A), (B) and (D) only.
- 3. (A), (C) and (D) only.
- 4. (B), (C) and (D) only.

A1:1

		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	ion		
	1003597		4.0	1.00
		In a particular study, a random sample (assumed to have been taken from a population which follow Normal distribution) was taken. If the sample size was 50, then the standard error of sample mean obtained was found to be 8 units. How much would be the standard error, if the sample size was increased to 200 (assuming that the standard deviation of the sample observations did not change)? 1. 2 2. 4 3. 6 4. 8 A1:1 A2:2 A3:3 A4:4		
Obj	ective Ques	ion		
	1003598		4.0	1.00
		Suppose that the recessive individuals ('aa', like lethal or sterile genes) of a large random mating population are intended to be entirely eliminated from the population and that only the dominants are allowed to mate and reproduce. The zygotic proportions of the various genotypes (AA, Aa, aa) in the population before such a selection (against recessives) are given as (p², 2pq, q²) respectively. The frequency of 'A' after such a selection in the next generation is 1. 1/(1 + q) 2. q/ (1+q) 3q²/ (1 + q) 4. 2pq/ (p² + 2pq)		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Ques	ion		
119	1003599		4.0	1.00

Let the frequency of a particular allele in the donor and the recipient populations, in some initial generation, be p_d and p_0 respectively. Also suppose that a proportion 'm' of the genes in the recipient population are replaced in every generation by immigrants. Assuming random mating within the recipient population, the difference in the gene frequency between the donor and recepient populations after one generation of migration is

```
1. - m (p_0 - p_d)

2. (1 - m)^2 (p_0 - p_d)

3. (1 - m) (p_0 - p_d)

4. 2 - m (p_0 - p_d)
```

A1:1

A2:2

A3:3

A4:4

Objective Question

	4.0	1.0
About 7% of men are color blind in consequence of a sex linked recessive gene. Assuming Hardy Weinberg equilibrium, what percentage of women are expected to be carriers of this gene?		
1. 13.51		
2. 13.02		
3. 0.49		
4. 7.00		
A1:1		
A2:2		
A3:3		
A4:4		
	what percentage of women are expected to be carriers of this gene? 1. 13.51 2. 13.02 3. 0.49 4. 7.00 A1:1 A2:2 A3:3	About 7% of men are color blind in consequence of a sex linked recessive gene. Assuming Hardy Weinberg equilibrium, what percentage of women are expected to be carriers of this gene? 1. 13.51 2. 13.02 3. 0.49 4. 7.00 A1:1 A2:2 A3:3